
MODELING SPACE-TIME RAINFALL AT THE MESOSCALE

USING RANDOM CASCADES

by

Thomas Mark Over

S.B. Civil Engineering, Massachusetts Institute of Technology, 1983

M.S. Water Resources Engineering, Stanford University, 1984

A thesis submitted to the

Faculty of the Graduate School of the

University of Colorado in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Program in Geophysics

1995



This thesis for the Doctor of Philosophy degree by

Thomas Mark Over

has been approved for the

Program in Geophysics

by

______________________________

Vijay K. Gupta (thesis advisor)

______________________________

Thomas J. Warner

Date ____________



Over, Thomas Mark (Ph.D., Geophysics)

Modeling Space-Time Rainfall at the Mesoscale Using Random Cascades

Thesis directed by Professor Vijay K. Gupta

Contemporary problems in hydrology require a simple, testable and accurate theo-

ry for mesoscale rainfall fields in space and time. The author’s thesis is that evolving 

multiplicative random cascades provide such a theory. This theory requires only a few 

parameters to model the observed intermittency and hierarchy of scales in space-time 

rainfall. Random cascades are first tested as a spatial theory on radar snapshots of me-

soscale rainfall fields. In this application, three tasks are accomplished: (1) a class of 

approximate cascade generators is developed; (2) an existing estimation theorem is 

generalized to include the new class of generators; and (3) the statistical fluctuations 

associated with the estimation procedure are characterized. The third task is accom-

plished using comparisons with a new method of simulating “off-grid” cascades.

For a large set of tropical oceanic radar data, it is seen that first-order parameter of 

the theory, which governs the structure of rainy versus dry regions, varies smoothly as 

a one-to-one function with the large-scale spatial average rain rate. However, the sec-

ond-order parameter, which governs the fluctuations within the rainy region, is invari-

ant. These results have important implication physical and theoretical implications.

The spatial cascade theory is extended to space-time by developing a new theory 

of “evolving” cascades, which results from generalizing the iid cascade generators to 

iid stochastic processes indexed by time. These stochastic processes may be quite gen-

eral; the only necessary conditions are that they marginally satisfy the conditions for 

cascade generators and that they causal. To accomodate forcing by the large-scale 

conditions, the generator processes are non-stationary.



iv

The space-time theory is tested by considering the evolution of a “ tracked” rain-

fall field. A space-time extension of the spatial estimation theorem is used to test the 

theory and estimate the temporal parameters. Additional tests of the space-time theory 

are provided by the Lagrangian and Eulerian covariance. The latter, under stationary 

conditions, is used to determine the conditions under which the theory satisfies Tay-

lor’s hypothesis.
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Chapter 1

Introduction

The spatial or space-time variability of rainfall is central to a number of important 

problems in surface hydrology. This means specifically that the average rain rate over 

some region is not sufficient to determine its hydrologic behavior to a first-order ap-

proximation. The sensitivity of hydrologic behavior to the variability of the rainfall 

field is usually the result of a non-linear interaction between the rainfall and some oth-

er component of the system. For example, the generation of runoff, depending as it 

does on partitioning of rainfall into interception, infiltration, and runoff is non-linear 

in the rain rate because interception and infiltration involve thresholds. Hence the 

same amount of rain applied uniformly will lead to a smaller amount of runoff than if 

it is applied in a highly non-uniform manner. This has been most clearly recognized in 

the development of parameterizations of the land surface in atmospheric models 

(Johnson et al. 1993; Pitman et al. 1993); for a clear demonstration of this effect in dis-

tributed hydrologic modeling, see Ogden and Julien (1994). Another example of sensi-

tivity to rainfall variability arising from non-linearity is the problem of rainfall 

measurement using both radar and passive microwave sensors. For both types of sen-

sors, the strength of the signal received by the sensor depends non-linearly on the rain 

rate. Hence when the rain rate is variable within the field-of-view, the variability must 

be known in order to convert the signal into an average rain rate applicable to the 

whole field-of-view (Chiu et al. 1990; Ha and North 1995; Zawadzki 1982; Lovejoy 

and Schertzer 1990). A third example is the problem of the prediction of floods. In this 

case, not only is the variability of the rainfall critical to the system’s behavior, but also 
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the spatial structure of this variability, because it is the interaction of the rainfall struc-

ture with river basin structure that determines the size and timing of the peak flow. 

These effects are seen indirectly in the “multiscaling” of floods (Gupta and Dawdy 

1995); for a direct demonstration, see Gupta et al. (1995).

The chief feature of space-time rainfall at the mesoscale that must be captured by 

any model or theory is its scaling hierarchy of structures in space and time. It is gener-

ally observed in mesoscale rainfall events that instead of a homogeneous rainfall field 

extending over a large region in space and time, there is a hierarchy of structures, each 

with its associated space and time scales and intensity, with a number of the smaller 

structures comprising the larger. As might be expected, the temporal scale (typical 

lifetime) of a given structure grows with spatial scale, while the average rainfall inten-

sity over it decreases. For example, as found by Austin and Houze (1970, 1972) in ex-

tratropical cyclones, the highest intensity element of a rainfall field is a convective 

cell, which lies at the small-scale end of the mesoscale range and has a spatial scale of 

about 2 km, a lifetime of 30 minutes to an hour, and a rainfall intensity typically on the 

order of 100 . At the large-scale limit of the mesoscale is the cyclone itself, 

which typically has a spatial scale of about 1000 km, a lifetime of several days, and a 

typical average rainfall intensity on the order of 1 . Empirical evidence for the 

space-time structure of rainfall fields will be reviewed in greater detail in Chapter 2.

The first stochastic theory to model this scaling hierarchy of space-time structures 

was that of LeCam (1961), who used the theory of clustered point processes to con-

struct a general approach to the problem. The basic idea of clustered point process the-

ories of spatial rainfall is to identify the convective cells as randomly-located points in 

space-time, associating with them some spatial extent, lifetime and intensity. The larg-

er-scale structures are modeled through the clustering of the points. Clustered point 

process models are attractive because they use the well-developed mathematical theo-

mm hr⁄

mm hr⁄



3

ry of point processes and random fields to directly model the hierarchy of scales ob-

served in space-time rainfall. However, this also leads to their main disadvantage. 

Because the structure at each scale is modeled separately, it has its own set of parame-

ters, a minimum of three. Thus a complete model with three scales would included 

nine parameters. Parameter sets of this size require sophisticated estimation tech-

niques, especially if the parameters are possibly varying in space and time.

An attractive means of reducing the number of parameters required in a stochastic 

rainfall theory is to assume some kind of scale invariance, which might hold over the 

whole mesoscale range and thus require only a few parameters to model the whole ob-

served hierarchy of structures. This approach assumes that the distinct scales associat-

ed with the hierarchy structures in rainfall systems are an artifact of the observation 

process.

New ideas lead to new ways of looking at data and thence to new results, and scal-

ing invariance was no exception. Lovejoy (1981, 1982) found fractal characteristics in 

the spatial structure of rain and cloud fields and extreme (hyperbolic) variability in the 

rain rate fluctuations in space and time. On the basis of these results, Lovejoy and 

Mandelbrot (1985) constructed an additive, simple-scaling space-time rainfall model 

on the basis of these results, the so-called fractal sum of pulses (FSP) model. Lovejoy 

and Schertzer (1985) generalized this to a multiscaling form, but retained the additivi-

ty.

The work of Waymire (1985) provides a conceptual bridge between the point pro-

cess theories that preceded it and the scale-invariant theories that followed. He showed 

how a large class of processes, including many that have been proposed as models of 

rainfall, have “scaling limits”. This means that under properly normalized averaging 

over successively larger domains in space or time, they converge to self-similar or 

simple-scaling processes. This provides theoretical justification for developing models 
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that are self-similar in the first place, such as the FSP.

Lovejoy and Schertzer (1985) also pointed out the applicability of theory of mul-

tiplicative random cascades (Mandelbrot 1974) to the modeling of rainfall fields, and 

subsequently developed this approach extensively; see the review by Tessier et al. 

(1993) and the discussion in Chapter 2. As multiplicative random cascades form the 

heart of the theory presented and tested here, their construction and properties of mul-

tiplicative random cascades are described in detail in Chapter 3. They have a number 

of advantages over additive scale-invariant theories in modelling rain, as will be de-

scribed in Chapter 2.

From the present point of view, the theory Lovejoy and Schertzer developed is 

lacking in two respects. First, it is oriented almost entirely toward the ensemble prop-

erties of geophysical fields and their estimation. This approach assumes the stationari-

ty of the processes being modelled. However, it is to be expected that the structure of 

such fields vary in space and time according to the variation of their physical environ-

ment. In the rainfall context one might ask for example whether it is reasonable to sup-

pose that a model of spatial rainfall should have the same parameters regardless of 

whether it is tropical convection or an extratropical cyclone. Thus the development of 

a “path-wise” theory that allows estimation of parameters from a single realization of a 

random cascade field is crucial. Second, since they had in view general applications to 

geophysical fields, a number of basic issues necessary to constructing a theory of 

space-time rainfall in particular remained unexplored, including: How well and over 

what range of scales and for what types of rainfall does the theory explain data? What 

types of generators are most appropriate? Are the parameters of the generators homo-

geneous in space and time or do they vary as a function of the meteorological condi-

tions? What effect does the “off-grid” nature of data have on the estimation problem? 

In view of the observed anisotropy of space and time dimensions, how can this theory 
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be extended into the time domain to make it into a space-time theory?

A fundamental step in the development of a path-wise random cascade theory was 

taken by Holley and Waymire (1992), who give conditions on the generator W of the 

cascade under which the small-scale limit of the scaling of the spatial moments of a 

random cascade measure converge almost surely to its characteristic function, the so-

called MKP function. These conditions are however rather restrictive and exclude gen-

erators that one would want to use in modeling rainfall, including those that have an 

“atom” at the value zero with positive probability, which is necessary in order to have 

regions without rain. Their result is also asymptotic, i.e., the theorem applies in the 

small-scale, high-resolution limit, and does not address the statistical issues involved 

in estimation from finite resolution data. A more subtle issue is that the result applies 

strictly only to the process of averaging up over the same subdivision of the domain of 

the cascade measure that was used in its construction. Since the method of subdivision 

is typically a grid, if the grid’s location, orientation, or existence is in doubt, we have 

what will be called here an “off-grid” cascade. Clearly data must be thought of an off-

grid cascade; the effect of this on the estimation problem is unknown.

In order to begin to answer these questions, the research described here was un-

dertaken. It is divided into three parts. Chapter 3 presents a review of the theory of ran-

dom cascades with some extensions for the purpose of modeling spatial rainfall. 

Chapter 4 gives results of the application of the theory presented in Chapter 3 to a 

large set of radar-derived rainfall scenes, and Chapter 5 presents an extension of the 

theory to space-time.

Following the review of the theory of random cascades given in Section 3.2, de-

velopments in the spatial theory of rainfall using random cascades begin with exten-

sions to the theory of Holley and Waymire (1992). It was found that one of the 

conditions stated in the theorem is not used in its proof. Relaxing the condition made it 



6

possible to show that the asymptotic convergence of the scaling of the moments holds 

for a range of non-negative moment orders for a more general class of generators, in-

cluding those with an atom at zero. This is described in Section 3.3. Second, a class of 

generators appropriate for modeling spatial rainfall was developed. The approach tak-

en was to investigate the notion of approximate generators. First and second-order ap-

proximate generators were defined, requiring one parameter for the first-order 

approximation and an additional parameter for the second. This study of appropriate 

cascade generators also led to clarification of the role of the branching number of the 

cascade and its relation to the log-infinite divisibility of the generator. These results 

are given in Section 3.4. In order to provide a consistency check on the results ob-

tained using the scaling of the moments, the prediction of the theory regarding two-

point spatial cross moments is also given in Section 3.3.

The statistical issues were explored primarily through simulations. This is due not 

only to the inherent difficulty of the theoretical issues involved even in the ideal “on-

grid” case, but also because as described above, data is inherently “off-grid”. Thus a 

means of simulating off-grid cascades was developed and simulations of the same res-

olution as the data were made. Then the same estimation techniques were applied to 

both. This procedure made it possible to explore questions of goodness-of-fit, bias and 

variance in estimation by comparison of results from data with those from simulations. 

The simulation of off-grid cascades is described in Section 4.3.

The theoretical ideas were tested on a database of radar-derived spatial rainfall 

consisting of more than 3200 scans obtained nominally every fifteen minutes over a 

fixed location in the tropical Atlantic in the summer of 1974. The predictions of the 

theory and parameter estimation techniques were applied to these scans, one at a time. 

The results of this analysis were compared to the results of applying the same analysis 

to simulated off-grid cascade fields of the same resolution, so that the effects of resolu-
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tion and the off-grid nature of the data could be taken into account. This analysis had 

two goals: (a) to provide a test of the hypothesis of scaling invariance which lies at the 

heart of the theory, and (b) assuming that scale invariance was found to hold, to esti-

mate the parameters of the theory and to investigate their dependence on the large-

scale meteorological conditions. It was found that the hypothesis of scaling of the spa-

tial moments was reasonably well-satisfied. This is described in Section 4.4.

We proceeded then to estimate the parameters and compare them to the large-

scale meteorological conditions. Direct measures of the large-scale meteorological 

conditions would only have been available from a re-analysis of the raw data of the ex-

periment, which was beyond the scope of the thesis and the expertise of the researcher 

to undertake. Instead the large-scale average rain rate, which is available from the ra-

dar simply by averaging, was employed as a measure of the large-scale meteorological 

conditions. Review of the theoretical as well as empirical literature regarding the gen-

eration of rainfall in general and in GATE in particular reveals that this is a useful 

measure in any case. It was found that the parameter of the first-order approximate 

cascade depends strongly and according to a simple one-to-one function of the large-

scale average rain rate (Over and Gupta 1994), while the “second-order” parameter is 

largely independent of the large-scale average rain rate. This result is described in Sec-

tion 4.5. It is interpreted in Section 4.6 to suggest that there is a small scale at which 

the probability distribution of rainfall, conditioned on positive rain, is independent of 

the large-scale average rain rate. This interpretation is also compared with the conclu-

sions of other empirical and theoretical studies.

The second main part of the thesis involves the development and testing of a theo-

ry of space-time rainfall, and is given in Chapter 5. This theory is based on the notion 

that the spatial rainfall field evolves in time, a fact which underlies the observed 

anisotropy of space and time noted above. First, this means that the future can depend 
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only on the past. Second, the field at time  will look quite similar to the field at 

time t, for a small lag . Third, since, as was observed in the analysis of the spatial da-

ta, the cascade parameters of the spatial rainfall field depend on the large-scale meteo-

rological conditions in which it is embedded, the theory must allow for evolution 

according to a non-stationary forcing. One basic implication of these requirements is 

that the space-time theory will naturally lie in the Lagrangian reference frame (that is, 

following the flow). This is because a Lagrangian description separates the variation 

occurring due to temporal evolution from that due to advection of the field. The basic 

notion that is used to develop a space-time theory here is to construct cascades of iid 

stochastic processes  indexed by time in place of the generators of the spatial cas-

cades which are iid random variables (Over and Gupta 1995). Such cascades are easily 

shown to satisfy the requirements just described, and in addition lead to a number of 

other interesting and important testable predictions, including those regarding the 

breakdown of Taylor’s hypothesis (Zawadzki 1973; Crane 1990). Space-time versions 

of the first and second-order spatial models described above are also developed. Due 

to the requirement of tracking rainfall fields in order to test a Lagrangian space-time 

theory, it is tested on a different set of data than is the spatial theory.

t τ+

τ

Wt



Chapter 2

Background

As stated in the introduction, the chief feature of spatial and space-time rainfall at 

the mesoscale that models have attempted to capture is what we have called a “scaling 

hierarchy” of structures. The goal of the first section of this chapter is to present the 

evidence for this notion. It first arose in essentially qualitative studies of the rainfall 

fields associated with extratropical cyclones, but it is also observed in most varieties of 

convective rainfall, both tropical and subtropical. Following this discussion of rainfall 

observations, the second section reviews developments in theories space-time rainfall. 

It is organized essentially in chronological order, and intends to show how theories 

were proposed, tested and improved upon from one generation to the next.

2.1  The Observed Space-Time Structure of Rainfall Fields

In the general reviews of the structure of precipitation systems of Houze (1981) 

and Houze and Hobbs (1982), precipitating weather systems are divided into three 

main types: extratropical cyclones, midlatitude convective systems (including thun-

derstorms), and tropical cloud systems (including hurricanes). Since our concern is 

with the space-time structure of rainfall fields, essentially, their space-time geometry, 

we will not discuss their dynamics to much depth. As described in the introduction, 

and to be amplified below, the notion of a scaling hierarchy of embedded structures 

forms the basis for most stochastic theories of space-time rainfall. Thus this review 

will focus on whether such a hierarchy is observed, and where it is observed, what are 

the geometry and space and time scales of its elements.
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2.1.1  Extratropical Cyclones

The traditional approach to stochastic space-time rainfall modeling, the clustered 

point process approach, which will be described in detail below, had its origins in the 

structures observed in the precipitation fields associated with extratropical cyclones by 

weather radars, which were increasingly employed in research and operational con-

texts following the discovery of their usefulness for meteorological purposes late in 

World War II. The general picture that emerged from these studies is, as we have said, 

a “scaling hierarchy” of structures, in which structures are embedded within succes-

sively larger structures, leading to a regular variation as a function of scale of the basic 

properties (rainfall intensity, duration, etc.) of these structures. One of the earliest such 

studies was that of Austin (1960), who identified the four-level hierarchy that provided 

the basic form of the studies that followed:

(a) a synoptic scale low pressure center with associated warm and cold fronts;

(b) banded mesoscale areas of precipitation (“rainbands”);

(c) areas of heavy rain within the mesoscale bands with scales of 30-50 miles and 

durations of a few hours; and

(d) individual convective showers with scales of 2-5 miles and durations typically 

less than an hour.

Perhaps the classic papers in this area are those of Austin and Houze (1970) and 

Austin and Houze (1972). Analysis of additional cases of cyclones over New England 

led them to maintain the same four-level hierarchy but added some additional detail. 

Table 2.1 was extracted from these papers. This table shows the decrease in intensity 

and increase in duration that is observed to accompany an increase in spatial scale in 

rainfall coming from extratropical cyclones. In fact, if the intensity and duration are 

plotted against scale on a log-log plot, both are approximately power laws.
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While it is not from an extratropical cyclone, it is worthwhile considering for pur-

poses of comparison the three-level hierarchy that was presented in the study of a de-

caying typhoon over Japan by Matsumoto (1968). The hierarchy consists of synoptic, 

meso- and convective scales, with which were associated typical vertical velocities 

and divergences, as shown in Table 2.2. One interesting aspect of this study is that it 

consists of scaling of the dynamical properties of the precipitation areas. Matsumoto 

notes that the rainfall amount that would be predicted from the synoptic-scale moisture 

convergence is only one-third of what was observed. This provides an additional ex-

ample of how variability can be a first-order effect in non-linear systems, as discussed 

in the introduction.

Further research revealed the same basic structures as in the research of Austin 

Table 2.1  The scaling hierarchy of structures in extratropical cyclones

Synoptic 
Systems

Large 
Mesoscale

Areas

Small 
Mesoscale 

Areas
Cells

Scale 1300-2600 250-400 5-10

Intensity 1 2 5 10-50

Duration
hours

24-72 2-5 1 0.1-0.5

Occurrence several per 
synoptic 
system

3-6 within 
LMSA

1-7 within 
SMSA

Motion same as 
associated 

SMSA

same as 
associated 

cells

with wind at 
mid-cell 
height

km
2

10 000,>

mm hr⁄
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and Houze in extratropical cyclones over the United Kingdom (Harrold 1973; Brown-

ing 1974; Harrold and Austin 1974) and the Pacific Northwest (Houze et al. 1976; 

Hobbs and Locatelli 1978; Hobbs 1978), and in subtropical cyclones near Japan (No-

zumi and Arakawa 1968). The research in the Pacific Northwest lead to the classifica-

tion of the rainbands into six types, depending on their location with respect to the 

warm and cold fronts associated with the cyclone. In terms of rain intensity and geom-

etry, the various types of rainbands do not differ greatly, except for the “narrow cold-

frontal” rainband, which is narrower (5 km as opposed to 50 km) and has deeper, more 

intense convection. These researchers also tended to classify the structures into three 

scales (synoptic, large mesoscale (rainband), and small mesoscale precipitation cores), 

with the cores having a length scale on the order of five km.

2.1.2  Midlatitude Convective Systems

Working from the smallest to the largest, midlatitude convective systems consist 

of single, supercell, and multicell thunderstorms, which are meso-γ (2-20 km) and 

meso-β (20-200 km) scale phenomena, and mesoscale convective complexes and 

squall lines, which are meso-α (200-2000 km) scale phenomena. All these phenomena 

include the thunderstorm cell as a basic element, either alone or grouped together in 

Table 2.2  The scaling hierarchy of dynamics in a decaying typhoon

Synoptic Mesoscale Convective

Scale
km

1000 100 10

Vertical 
Velocity

0.01 0.1 1.0

Divergence

ms
1–

s
1–

10
5–

10
4–

10
3–
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some way, usually then including a cirrus anvil with stratiform precipitation.

The classic research on the structure of single and multicell thunderstorms was the 

Thunderstorm Project (Byers and Braham 1949). This research concerned summer 

“air-mass” thunderstorms, which occur in large masses of convectively unstable air 

with little vertical wind shear. It showed that each thunderstorm cell follows a certain 

life cycle. In the developing stage, a single strong updraft characterizes the cell. Pre-

cipitation is forming, but its fall is inhibited by the updraft. Eventually, however, the 

weight of the precipitation overcomes the strength of the updraft and a downdraft as-

sociated with rain forms. This is the mature stage. At the dissipating stage, the updraft 

has died and the downdraft continues until the precipitation has rained out. The whole 

cycle takes about an hour.

It is commonly observed that a group of such cells appears together, often in dif-

ferent stages of their life cycles, and the whole group is usually defined as single thun-

derstorm. Such a multicell cell storm will typically have a life time of several hours. It 

is thought that the downdrafts created by the falling precipitation are responsible for 

the clustering of thunderstorm cells because they induce updrafts nearby, though the 

cause of the clustering of thunderstorms is not completely understood. Indeed there are 

physical reasons (the convective stabilization of the environment of the cloud) and ob-

servations to support the notion that cumulus clouds are regularly-distributed rather 

than clustered (Ramirez and Bras 1990; Ramirez et al. 1990; see also Weger et al. 

1993 and references therein). However, it seems clear empirically that storms of hy-

drologic importance are indeed clustered, since it is only isolated air-mass thunder-

storms that are observed apart from clusters, and these generally produce only minor 

amounts of precipitation.

In weak ambient vertical wind shear a multicell storm will tend to consist of a dis-

organized clumping of cells, while in somewhat stronger wind shear, it will tend to be-



14

come organized, with new cells forming on the leading edge of the storm and 

dissipating on the trailing edge. In this case there is possibly a storm-wide air inflow-

outflow pattern, though this may possibly just be the aggregate effect of the individual 

cells.

In strong vertical wind shear and strong instability, a supercell storm sometimes 

forms. These are of the scale of a multicell storm, but consist of a single large cell with 

a strong updraft and downdraft pair. The strong wind shear allows the storm to tilt over 

such that the downdraft associated with the precipitation on the leading side does not 

kill the updraft in the rear that supply the moisture. The tilting due to the shear also en-

hances the size of the anvil cloud and leads to a gradation of precipitation intensities 

from the leading edge where there is light rain back to the storm center, where there is 

strong hail and possibly a tornado. Since these storms are associated with severe 

weather such as tornados and large hail, they have been studied extensively observa-

tionally as well as by modeling and many typical features have been isolated. Howev-

er, for our present purposes it is sufficient merely to note that there are conditions 

under which the scale of the convective cell is considerably larger than under other 

conditions.

When several thunderstorms are grouped together, we have added the third scale 

to the sequence cell, storm, mesoscale convective complex (MCC). As noted above, 

they are meso-α scale phenomena, including meso-α scale airflow and cloud shield. 

The cloud shield is a source of stratiform precipitation. The mesoscale airflow appears 

to be initiated by the aggregate effect of the thunderstorms, but as the system matures, 

mesoscale phenomena, such as the stratiform precipitation and radiative transfer asso-

ciated with the cloud shield, become increasingly important. Thus in the mature stage 

of an MCC, the thunderstorms may have died out. It has been estimated that MCCs are 

responsible for 50-60% of the summertime precipitation over the Great Plains of the 
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US (Fritsch et al. 1981), so clearly they are a hydrologically important phenomenon in 

that region. Again the focus here is not so much on the dynamics of MCCs as on the 

elements of their structure that are relevant to stochastic modeling.

While MCCs are round or oval, sometimes groups of thunderstorms develop 

along a line, which is then called a squall line. These develop under a variety of condi-

tions, may occur in groups, and usually include a trailing stratiform region of precipi-

tation. Their linear or curvilinear form, like that of rainbands associated with 

extratropical cyclones, has important implications for the geometric modeling being 

discussed here. In particular, at the scale of the squall line, the model would have to be 

spatially anisotropic. Because of this, general theories of space-time rainfall have not 

usually taken them directly into account.

2.1.3  Tropical Cloud Systems

The structure of tropical precipitation, apparently since it is also of convective or-

igin, is similar to that of midlatitude convective systems. We refer the reader again to 

Houze and Hobbs (1982) for a more in-depth review. As in the midlatitudes, tropical 

rainfall is sometimes due to isolated cumulonimbus. Tropical cumulonimbus (isolated 

or not) are generally not as violent as severe midlatitude thunderstorms, as measured 

for example by updraft velocities; see Jorgensen and LeMone (1989) and references 

therein. However, the bulk of precipitation in the tropics, as in midlatitude convective 

systems, comes from larger-scale systems with a hierarchical structure. These occur in 

two basic forms. One is disorganized clumps of convective clouds with a large cirrus 

shield like an MCC; they are called simply tropical cloud clusters. The other is the 

tropical squall line, again with a form similar to its midlatitude cousin.

Organization of tropical convection on the synoptic and yet larger scales is also 

observed. In the GARP Atlantic Tropical Experiment (GATE), whose data we use to 

test our theory in Chapter 4, it was observed that easterly waves with a time interval of 
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three to four days organized the convection on the synoptic scale (Reed et al. 1977; 

Thompson et al. 1979). An overview of the precipitation systems observed in GATE is 

given in Houze and Betts (1981). In the Pacific, synoptic and larger scale organization 

takes the form of so-called tropical super cloud clusters (SCCs). These have spatial 

scales of 2000-4000 km and lifetimes of 10-15 days, and propagate eastward, while the 

cloud clusters of which they consist propagate westward (Nakazawa 1988; Lau et al 

1991; Sui and Lau 1992; Mapes and Houze 1993).

2.2  Previous Approaches to Modeling Space-Time Rainfall

The development of stochastic theories or models of rainfall in space and time has 

been approached from many points of view. A common difficulty has been to make 

the model or theory simple enough to realize two goals: testing the model structure 

and estimating the model parameters. We will review previously developed models on 

the basis of these criteria below. A model is testable if predictions can be made based 

on its assumptions that can be tested against data. The testability of a model is usually 

in inverse proportion to the number of free parameters it contains, although model 

structure is also important. It will be seen in particular that the scaling hierarchy of 

structures observed in most hydrologically significant precipitation systems reviewed 

above can be modeled with particular parsimony of parameters by the use of scaling 

invariant theories. Because our review is concerned with the development of the theo-

ry of space-time rainfall, models that operate in a purely simulation mode with essen-

tially no testability will not be considered.

2.2.1  Point Process Models

The work of LeCam (1961) underlies a large class of stochastic space-time rain-

fall models, those which are constructed from spatial point processes. Informally, a 

point process is a random means of distributing points in some space. These points be-
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come the basic building block of the stochastic model. Most such models consider the 

points to be convective storm cells, which are assigned intensity, shape, velocity, and 

temporal behavior. Their occurrence is also usually clustered in space and time.

In particular, LeCam proposed the following elements for his model. He pictured 

the points of a point process being used to represent convective cells with random di-

ameter and intensity, possibly with variable intensity structure interior to the cell di-

ameter, that moved with random velocity. These cells in turn occur randomly in 

clusters, which possibly may be shaped like fronts. The clusters themselves will have 

some random motion and dissipation behavior. And at a third level, the clusters occur 

in clusters, which constitute a storm.

So LeCam’s basic construction is quite general. There are a number of unspeci-

fied functions that could possibly include stochastic dependence and nonhomogene-

ities. His basic assumption is that within a storm, the fronts are placed independently 

of one another, and within a front, the cells are placed independently of one another, 

which makes the process a two-stage Neyman-Scott clustering process and permits 

computation of the Laplace transform of the rainfall process in terms of the unspeci-

fied functions.

The first work to develop LeCam’s basic structure into a fully specified stochastic 

space-time model was that of Waymire et al. (1984), which presents what is common-

ly called the WGR model. The WGR model adopts the two-stage clustering of convec-

tive cells of LeCam and makes simple (and homogeneous) assumptions on the size, 

shape, intensity, and space-time occurrence of the elements of the cells and their clus-

ters, such that the first-order (mean) and second-order (space-time covariance) behav-

ior of the model could be computed. In its most basic form, it has nine parameters, 

which the authors specified using typical values obtained from the extratropical cy-

clone literature described above.
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The main purpose of the development of the WGR model was to create an exam-

ple of a model or theory which obeyed Taylor’s hypothesis of fluid turbulence up to a 

short time, as had been shown to hold in rainfall by Zawadzki (1973). For a definition 

of this hypothesis and further discussion, see Chapter 5.3.2. This purpose was indeed 

accomplished, and later Gupta and Waymire (1987) showed that a whole class of point 

process-type models would obey Taylor’s hypothesis up to the characteristic time of 

dissipation of their rainfall cells.

Despite the fact that the goal of the development of the WGR model was to ex-

plore Taylor’s hypothesis and its breakdown in space-time rainfall, it has been subse-

quently used simply as a stochastic model, i.e., to generate sequences of rainfall fields 

used for other purposes. One of the basic issues involved in such use is parameter esti-

mation. Its nine parameters makes this a somewhat difficult task, and, as discussed 

above, has a negative impact on its testability. Since the second-order moment proper-

ties of the theory were known, Valdes et al. (1985) used the method of moments to es-

timate parameters. Since rain gauges record rainfall aggregated over time intervals, a 

basic advance in parameter estimation was to compute the time-integrated first and 

second-order behavior of the WGR model, which was accomplished and applied to a 

small basin with a dense network of gauges by Islam et al. (1988). They also tested the 

sensitivity of the model to variation in the parameters and the consistency of parameter 

estimation over a range of time scales. Valdes et al. (1990) wanted to estimate param-

eters for the WGR model from radar data, so they performed the analogous integration 

in space and likewise tested the consistency of parameter estimation over a range of 

spatial scales.

The fact that it was possible to compute the second-order moment properties of 

the WGR model and its spatially and temporally integrated forms, so that the parame-

ters of the model could be estimated from data and the breakdown of Taylor’s hypoth-
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esis could be predicted shows that the WGR model is a relatively simple construct. 

However, as described, the information derived obtained from these calculations was 

mostly used in parameter estimation, so that testable predictions were not emphasized. 

However, see Valdes et al. (1994) for a test of the WGR model vis-a-vis some Gauss-

ian random field models using the their spectra compared to the spectra of the GATE 

rainfall data. Note also that the parameter estimation requirements make testing for 

non-stationarity or non-homogeneity in the data virtually impossible.

An extension of the WGR model by Phelan and Goodall (1990) addresses some of 

concerns; see also Goodall and Phelan (1991). They allow each cell its own constant 

but random water content, intensification rate, aging rate, velocity and spatial extent. 

They develop an estimation procedure that involves tracking individual cells in the 

sample rainfall intensity process, which is a radical departure from the fitting of sec-

ond-order moments that was used previously. After fitting the model, the residuals 

showed a lot of spatial structure in the dissipative stage of the rainfall field, so Phelan 

(1991, 1992) considered estimating a non-parametric aging function as an alternative 

to the previously assumed exponential. The intensive tracking procedure used to esti-

mate parameters for these models clearly yields a lot of information; however, it 

comes at the price of a much more complicated theory. It seems unlikely that it will be 

possible to fully specify in a meaningful way a model of such complexity.

To avoid the parameter estimation difficulties of the more realistic models, some 

very simple point process models have also been developed, often with more analyti-

cal than modeling goals. For example, Smith and Karr (1985) studied maximum likeli-

hood and method moments parameter estimation techniques for a five-parameter 

model of daily totals of space-time rainfall. They found that the method moments ap-

proach is analytically simpler and note that the cell radius parameter is difficult if not 

impossible to estimate from rain gauge data. Cox and Isham (1988) study space-time 
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extensions of the temporal models of Rodriguez-Iturbe et al. (1987). In these models, 

storms consisting of single disks with random radii, velocities, lifetimes, and rain rates 

arrive according to Poissonian and clustered point processes in time. It was found, as 

might be expected, that the second-order properties, including conditions of validity of 

Taylor’s hypothesis, and other quantities of interest such as the distribution of storm 

duration at a point can be computed for the Poissonian case, while these computations 

are quite difficult for the clustered case. In the Poissonian case, Taylor’s hypothesis is 

satisfied for times short relative to the mean lifetime of a cell when the velocity of 

cells does not vary much from one to another.

Point process models that are simple because they involve little or no clustering 

seem applicable to air-mass thunderstorms. Using assumptions applicable to this case, 

Rodriguez-Iturbe et al. (1986), in an extension of the work of Eagleson (1984), com-

puted the second-order and fractional wetting properties of a spatial model of total 

storm depth in which the cells are either located independently using a Poisson process 

or by a two-level Neyman-Scott clustering process. The other parameters of the model 

are the distribution of rainfall depths and the cell spread function. Eagleson et al. 

(1987) applied the model in its Poissonian form against data from Walnut Gulch ex-

perimental watershed in Arizona to determine which of the three spread functions 

studied was most appropriate. A single-event (non-stationary) space-time extension of 

the model of Rodriguez-Iturbe et al. (1986) was studied by Rodriguez-Iturbe and Ea-

gleson (1987). They computed the second-order properties of the rainfall intensity and 

cumulative rainfall depth fields.

An interesting extension of these ideas is the model of Cowpertwait (1995). In 

this model, storms are again modeled as disks with random radius, lifetime and inten-

sity, but now the storms are randomly selected from a finite number of types, each 

with its own set of distributions of cell properties. Thus the properties of an arbitrary 
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cell are correlated. The cell arrivals are according to a generalization of the Neyman-

Scott clustering process. The spatial distribution of the cells is Poissonian. Second-or-

der properties of the model are calculated in order to allow fitting of the model from 

multi-site temporal data.

2.2.2  Gaussian Random Field Models

A second class of models that has been developed and used extensively are those 

based on Gaussian random fields or functions thereof. The model of Bras and Rod-

riguez-Iturbe (1976) models storm “exteriors” essentially according to a point process, 

parameterized by the time between events, storm duration, total depth and storm ve-

locity for various types of events, but the “interior” follows a non-stationary hyeto-

graph with a superimposed space-time correlated Gaussian random field, for which 

Taylor’s hypothesis is assumed valid for all times. The resulting field is rather smooth 

compared to instantaneous rainfall fields obtained from radar. This model has been 

used in a number of simulation studies, including that of Wilson et al. (1979).

One particular weakness of the model of Bras and Rodriguez-Iturbe is its Gauss-

ian distribution of rainfall residuals, whereas rain rates conditioned on rain are usually 

found to be closer to lognormally distributed. Using this idea, Bell (1987) produced a 

model in which he transformed a Gaussian random field into a field with a mixed log-

normal distribution, including an atom at zero. The model requires the prescription of 

the marginal distribution of rain rates and the spatial and temporal correlation structure 

of the original Gaussian random field, which reproduces the realistic feature that the 

temporal correlations at larger scales are longer than those at smaller scales. The mod-

el may include motion by advection. The model was fitted to the observations of 

GATE in order to study the accuracy of satellite measurements of GATE-like rain 

(Bell et al. 1990).

Gaussian random field models, without transformation into a mixed lognormal 
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form and only a single time and length scale, i.e., Gaussian noise-forced diffusive 

models, have also been extensively used to study satellite estimation problems. Mod-

els of this type without (North and Nakamoto 1989) and with advection (Nakamoto et 

al. 1990) have been used. The temporal and spatial spectra of these models as well as 

the WGR model are compared with the GATE data in Valdes et al. (1994), and it is 

found that the Gaussian random field models fit the spectra of data much better. They 

have also been applied to rainfall over land (Polyak et al. 1994).

2.2.3  Notions of Scaling Invariance in Rainfall and their Testing

Before proceeding to the discussion of full-fledged models of spatial and space-

time rainfall that utilize scaling invariance ideas, it is worthwhile presenting these 

ideas so that some basic ideas are clear. The basic notions underlying theoretical ap-

proaches to scale-invariant descriptions of rainfall fields are the properties of random 

fields called “simple scaling” and its generalization “multiscaling”. The notion of sim-

ple scaling has its origin in the characterization of the “stable distributions”, and was 

generalized to its present form by Lamperti (1962). We will generally follow the expo-

sition of Gupta and Waymire (1990).

Consider an arbitrary random field  indexed by . It is said to 

be “simple scaling” if for each λ there exists a positive function  such that for any 

arbitrary set of points , the following equality of joint distributions holds:

, (2.1)

where . If we consider equality in distribution, and (2.1) can be written 

simply

Y x( ){ } x D ℜd⊆∈
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. (2.2)

While this may seem quite abstract, a significant consequence is that if the scaling 

function  exists and is continuous, it must have the form

, (2.3)

i.e., a power law in λ. Then equation (2.2) becomes

, (2.4)

where again we have equality in distribution. So a multiplication by  converts the 

joint distribution of the field under rescaling of its index back to that of the field with 

the original index. This suggests why simple scaling is also called “self-similar”.

This becomes applicable to spatial rainfall by considering the λ-scale averages of 

the simple scaling field , i.e.,

, (2.5)

where  is a subset of  of area . As shown by Gupta and Waymire (1991),  

is also simple scaling with the same exponent θ as , i.e.,

, (2.6)

where again we have equality in distribution.

Using these representations, Kedem and Chiu (1987) showed that empirically rea-

sonable rain rate processes in space and time cannot be simple scaling. In space, they 

observed that the probability of positive rain increases with scale, whereas self-simi-

larity requires that it be constant. In time, they assumed that the process had stationary 
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increments. Then self-similarity requires that if it ever stops raining, it can never start 

again, which is clearly unphysical. Thus if we define intermittency to mean the pres-

ence of zeroes in the rainfall field, simple scaling founders on intermittency both in 

space and in time (assuming stationary increments).

Gupta and Waymire (1991) investigated theoretical issues involving random 

fields with homogeneous simple-scaling fluctuations, with an eye toward application 

to rainfall. Their results are generally negative. First they note the result of Dobrushin 

(1980), which is that if an ordinary random field (that is, a random function where 

point values  are defined) is homogeneous, simple-scaling, and continuous in 

probability, then it is with probability one a random constant. They also showed, fol-

lowing the Mandelbrot (1972, 1974) that a random field that is lognormal at all scales 

of resolution cannot have simple-scaling fluctuations.

Some simple considerations regarding moments suggest the proper direction for 

generalization of the notion of simple scaling to something that is useful in the rainfall 

context. It follows from equation (2.6) that

, (2.7)

or,

(2.8)

(Gupta and Waymire 1990). If  is as in equation (2.6) an average rain rate at resolu-

tion λ, then it is non-negative. In order to avoid dividing by zero, we restrict the mo-

ment order to . Equation (2.8) shows an easily tested implication of simple 

scaling: the moments are log-log linear versus scale of resolution λ with slope function

. (2.9)
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Since  for a non-negative random variable Y, taking  in equa-

tion (2.9) demonstrates the result of Kedem and Chiu noted above regarding the in-

compatibility of simple scaling for spatial rainfall with the observation that the 

probability of positive rain depends on resolution.

What is commonly observed instead of equation (2.9) is the following:

(2.10)

for some non-linear function . In this case, the moments are still log-log linear 

with scale, but the slope of the moments versus scale is no longer linear. It is shown by 

Gupta and Waymire (1990) that this behavior is implied by a scale invariance property 

quite similar in form to the simple scaling relation equation (2.2):

. (2.11)

Now, however, the scale function  is random and the scale change can only go 

in one direction. Gupta and Waymire show that  concave, as is observed in data, 

the scale change is limited to magnification, so we take . The general solution of 

the scale function is no longer  but

, , (2.12)

where µ is an arbitrary real number and  is a process with stationary increments. 

Since processes with stationary increments have natural representations as sums of 

identically distributed (id) random variables,  is essentially a product of id random 

variables. If  is limited to the subclass where  is a process with independent and 

stationary increments, then  has the representation as a product of independent and 

identically distributed (iid) random variables. If we call these iid random variables  

then from equation (2.11) we have
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. (2.13)

To see that this essentially gives the marginal representation of a random cascade, 

compare equation (3.20) in Section 3.2. This connection is explained more thoroughly 

in Gupta and Waymire (1993).

While these theoretical investigations point to the necessity of generalizing the 

notion of scaling invariance beyond simple scaling, some recent research involving 

wavelet transforms has attempted to resurrect simple scaling in rainfall. This line of re-

search was introduced by Kumar and Foufoula-Georgiou (1993a, b). They used Haar 

wavelets to decompose rainfall fields into a sequence of average and fluctuation fields 

at each scale, and then studied the distributions of the fluctuations as a function of 

scale, by fitting them to the symmetric subclass of Levy-stable laws. The range of spa-

tial resolutions where the scale parameter of the symmetric stable law varied log-log 

linearly with spatial resolution, which is the test of simple scaling of the wavelet fluc-

tuations in this framework, was usually found from 2 km up to 25-30 km. However, 

this result must be considered somewhat tentatively, as the fits to the stable laws were 

not generally very good and the fluctuations were seen to depend strongly on their as-

sociated local averages. This latter point is important because it means that the fluctu-

ations at a given scale are not homogeneous, i.e., they do not come from a common 

distribution. Thus it is not clear what can be learned fitting a single distribution to 

them.

This latter difficulty can be remedied at least to a large degree by “standardizing” 

the fluctuations, i.e., dividing them by their local averages. Then, as shown by Perica 

and Foufoula-Georgiou (1995a), the fluctuations are well-fitted by Gaussian distribu-

tions, and the scale parameters suggested self-similarity over a similar range of scales 

as for the non-standardized fluctuations. Though the same authors have proposed a 
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procedure for disaggregating rainfall fields from coarser to finer resolution based on 

their results (Perica and Foufoula-Georgiou 1995b), it nevertheless remains true that 

wavelets transforms are fundamentally a data analysis framework, not a modeling 

framework or theory. Additionally, while we have not in this review precisely defined 

wavelet fluctuations, they are essentially just the difference between the local rain rate 

at one resolution and the local average rain rate at the next coarser resolution. Thus a 

wavelet analysis is an additive decomposition. As such, they do not yield information 

regarding the non-rainy regions of the field. The homogenization of the fluctuations 

that resulted from division by the local averages suggests what was concluded previ-

ously by Lovejoy and Schertzer (1985) and Gupta and Waymire (1990): rainfall fields 

are fundamentally multiplicative, not additive. Thus a connection between the stan-

dardized fluctuations of a Haar wavelet decomposition and the multipliers of a random 

cascade seems a possibility; however, an attempt to establish one by Over and Gupta 

(1993) was largely unsuccessful. This is an important question that ought to be pur-

sued further.

2.2.4  Additive, Simple-Scaling Models

As described in the introduction, empirical evidence for scale invariance in rain-

fall fields apparently began with Lovejoy (1981, 1982), who showed that the perime-

ter-area relation of rain and cloud fields over a wide range of scales suggests fractal 

characteristics and provided evidence that distributions of fluctuations of rainfall rates 

in space and time have hyperbolic (power-law) tails, which is an indication of the pres-

ence of extreme variability in rain rates. Lovejoy and Mandelbrot (1985) constructed a 

space-time rainfall model on the basis of these results, the so-called fractal sum of 

pulses (FSP) model. As the name implies, one generic feature of this model is that it is 

an additive model, consisting of the sum of basic random elements (“pulses”) whose 

size and intensity distributions are chosen to match the spatial and intensity properties 
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observed by Lovejoy (1981, 1982). In particular, in two dimensions, these pulses are 

cylindrical with random base areas with the distribution  for  and 

height (rain rate) fluctuations with the distribution  (i.e., a fluctuation is 

equally likely to be positive or negative). This construction gives a spatial scaling ex-

ponent of , so that like any simple scaling theory, the process is governed 

by a single exponent.

They observed however in radar data that  (Lovejoy and 

Schertzer 1985). They solved this problem by locating the pulses only on a fractal sub-

set of the two-dimensional space, giving what they called the “scaling cluster of puls-

es” (SCP) model. Since this model involves two independent exponents, it cannot be 

simple-scaling. But it is still an additive model and it shares with the FSP model and 

indeed any additive random model a common difficulty: negative values always have 

some probability of occurrence. Thus they discovered what is described above, that 

generalization to more than one scaling exponent is more naturally accomplished in a 

multiplicative framework.

An important development of Lovejoy and Schertzer (1985) that applies to both 

additive and multiplicative models is the notion of generalized scale invariance. This 

allows general forms of anisotropy applicable to the vertical stratification, differential 

rotation, or space-time anisotropy to be modeled in a scale-invariant framework. They 

carried these ideas over into the multiplicative framework (Lovejoy and Schertzer 

1987), but their utility has been limited by the difficulty of deriving simple testable 

predictions from theories involving such anisotropies.

2.2.5  Multiplicative, Multi-Scaling Models

As just noted, Lovejoy and co-workers introduced some interesting additive mod-

els, but their major contribution was to apply and develop the theory of multiplicative 

random cascades for applications to atmospheric phenomena, including rainfall fields. 

P A a>( ) a
1–

= a 1>

∆R A
1 α⁄±≡

H 1 α⁄=
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This theory has its conceptual roots in the statistical theory of turbulence (Kolmogorov 

1941), but was introduced in its basic mathematical form by Mandelbrot (1974). Mul-

tiplicative random cascades, like the FSP process, are constructed using a basic ran-

dom element, but a product of them arranged according to a hierarchical structure 

called a cascade. The basic random element is a random variable with non-negative 

support denoted by W and called the generator of the cascade. The construction and 

properties of multiplicative random cascades will be described in detail in Chapter 3. 

Multiplicative random cascades have a number of advantages over additive theories 

such as the FSP model. We note three. First, the fractal spatial properties and extreme 

variability observed in data arise naturally from the construction. Second, the FSP pro-

cess and additive models in general have difficulty modeling regions of zero rain rate, 

whereas zeroes may be obtained from multiplicative models simply by multiplying by 

zero. Third, under suitable conditions on W, there is a one-to-one correspondence be-

tween quantities that are simple to compute from data and the parameters of the model. 

Thus such models, as scale invariant constructions, not only have few parameters, but 

in addition, these parameters are relatively straightforward to estimate.

Schertzer and Lovejoy added a number of enhancements to the basic theory pro-

posed by Mandelbrot. In addition to the notion of generalized scale invariance de-

scribed above, they proposed an important class of generators (the “universal” 

(extremal) log-Levy generators, (Schertzer and Lovejoy 1987), developed data analy-

sis and parameter estimation techniques (“functional box counting” and “elliptical di-

mensional sampling” (Lovejoy et al. 1987), “double trace moments” (Lavallee et al. 

1992), and “probability distribution multiple scaling” (Lavallee et al. 1991)), and rec-

ognized the inherent limitations of parameter estimation techniques (the notion of the 

“sampling dimension” (Lavallee et al. 1991)). As described in the introduction, despite 

their general importance, these developments do not address a number of the basic 
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questions required for theories of space-time rainfall and left open the need for the re-

search described here.

It should also be noted that, as conceived by Lovejoy and coworkers (see, e.g., the 

review by Tessier et al. (1993)), rain rates are not to be directly modeled by multiplica-

tive random cascades. Instead, using a parameter derived from the Fourier spectrum of 

the rainfield, the multiplicative cascade is power-law filtered (i.e., smoothed). The 

idea behind this point of view seems to be an analogy with the statistical theory (Kol-

mogorov 1941), in which the conserved quantity (energy) is modeled purely multipli-

catively as a measure (Mandelbrot 1974), but an associated fluctuation field (the 

velocities) is essentially additive. Lovejoy and co-workers take it that the rainfall field 

is in analogy with the velocity field in turbulence, while the conserved quantity is 

some unknown potential. While it is agreed that it is not exactly clear how this analogy 

should extend in the case of rainfall, the non-negativity and conservation properties of 

rainfall rate suggests that instead that as a working hypothesis, rainfall rate should be 

taken in analogy with energy rather than velocity. The relatively good fit of random 

cascades directly to rainfall fields shown in this thesis serves to confirm this hypothe-

sis.



Chapter 3

The Theory of Random Cascades with Applications to 

Spatial Rainfall

3.1  Motivation

The random cascade construction can be developed from an analysis of the fol-

lowing situation. Consider an instantaneous snapshot of rain rates over some region, 

for example, a single scan of weather radar data. Assume that the data has been binned 

into  square boxes with side length , and associate with each box the spatial 

average rain rate over the box, denoting this by , . This is il-

lustrated for  in Figure 3.1(a). In the GATE data that will be used extensively 

here,  and , so the whole snapshot is 64 by 64 boxes, or 256 by 

256 km. Now consider the boxes constructed by taking contiguous groups of boxes of 

side length . There are  boxes of side length 2  (Figure 3.1(b)),  

boxes of side length 4 , and so on up to a single box of side length  

(Figure 3.1(c)). It will be convenient to use a normalized side length parameter 

, which will be called the “scale”. Associated with each box at each scale 

is the rain rate averaged over the region enclosed by the boxes, denoted , 

, where  denotes the number of boxes at scale λ. A 

“scaling” analysis of this snapshot of data is performed by considering the statistical 

properties of the rain rates  as a function of scale λ.

Now, for real (convective) rain, typically a significant number of the  at all 

but the largest scale will have a value of zero, i.e., it will not be raining anywhere in 

22n lmin

Ri lmin( ) i 1 2 … 22n, , ,=

n 3=

lmin 4 km= n 6=

lmin 2n 1– lmin 2n 2–
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i 1 2 … N λ( ), , ,= N λ( ) λ 2–=

Ri λ( )
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them. The first “scaling” question one might ask then is how the fraction  of boxes 

with rain rate greater than zero changes as a function of scale. Performing this compu-

tation on the empirical data we will examine below yields the following:

(3.1)

To analyze this result briefly, consider first the largest scale ( ). Then 

, but since there is only one box at that scale, if there is any rain we have 

. Next consider minimum and maximum values of k. If , then  

at all scales, so  corresponds to rain everywhere. If , first notice by defi-

nition that

 , (3.2)

where  is the number of boxes with rain at scale λ. Since by assumption 

, we have , so there is a single box with rain at each 

l 2lmin=l lmin=
l lmax=

(a) (b) (c)

highest resolution after one averaging step after three averaging steps

8 x 8 4 x 4 1 x 1
λ 1 8⁄= λ 1 4⁄= λ 1=

Figure 3.1  Scaling analysis of a spatial rainfall scene
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scale. So it appears that k has the range , with increasing k indicating increas-

ing sparsity of the set where there is rain. Since the dimension of a point is zero and the 

dimension of a planar region is two, it appears that  indicates the dimension of 

the set that has rain. Those familiar with fractals will know that we have been perform-

ing a dimension estimate by so-called box-counting on this set.

As a point of comparison, consider the result of such a scaling analysis when the 

boxes are assigned to be rainy or dry independently, as was done by Gupta and 

Waymire (1993). In this case, the fraction of boxes with rain is only power law with 

scale in the limit as , and always has an exponent of .

Of course we are interested in more than just the region where there is rain. We 

are also interested in how much rain is falling in the boxes that have rain, and, in the 

present context, how that rain rate changes as a function of scale. Let’s ask a specific 

question: how does the average rain rate in the boxes where there is rain vary as a 

function of scale? Let’s denote the rain rates in boxes at scale λ that have non-zero rain 

rates as ,  and the average of these by . This could also 

be computed empirically, but you would find that 

, (3.3)

where  is the spatial average rain rate. The result may be comput-

ed as follows. Notice that  can be written in terms of  as follows:

. (3.4)

Solving for  gives equation (3.3).

From this simple analysis a stochastic model can be constructed that has the prop-

erties of the data. Consider the same  by  region (Figure 3.2(a)). Assign the 
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uniform rain rate  to the whole region as an initial condition. Divide the region into 

four  by  boxes (Figure 3.2(b)). Assume the rain rate in the ith box can 

be written as the product , where the  are random variables. As the sim-

plest possibility, assume additionally that the  are independent and identically 

distributed (iid) for all λ and all i, i.e., independent of each other and scale and space. 

The distribution of the  will be derived from the results of our analysis above. 

Assume , which implies at  that

. (3.5)

Similarly, following equation (3.3), assume , which implies at 

 that

  (3.6)

where , hence .

Now consider further subdivision of the region into boxes of size , 

, and so on with additional multiplications by iid random variables  (Figure 
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Figure 3.2  Construction of a cascade model of a spatial rainfall scene
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3.2(c)). After n subdivisions and multiplications, we have

, , (3.7)

where , for which

(3.8)

since the  are iid. Similarly,

, (3.9)

so it can be seen that this choice of multiplicative structure and distribution for the W 

reproduces the empirical scaling properties of the data.

Let’s examine the distribution of W further, as far as we have determined it. We 

have

 , (3.10)

which implies

 (3.11)

and

 . (3.12)

We have not determined anything about the distribution of , the positive part of W, 

beyond its expectation. So the distribution of  is arbitrary insofar as matching the 

empirical results noted thus far, apart from being positive and having the appropriate 

expectation. As we will see below, simply taking  to be an atom at its expected val-

ue, i.e., , gives a first-order model of spatial rain 
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rates for convective rain.

Notice that  implies a condition of conservation of rain rate on average 

as the model proceeds from scale to scale. To see this, consider that the expected value 

of the average rain rate is given by

, (3.13)

and thus is independent of scale. This does not mean that the average rain rate will be 

exactly  at every scale; it is easy to see for example that there is some probability 

that with the choice of the random variable W that we have made here that the rain rate 

will become zero everywhere. Exact (pathwise) conservation was assumed in the data 

analysis. The conservation condition will turn out to be an important condition for the-

orems describing the result of letting this process continue to the limit of small scales.

In the limit of small scales (i.e.,  and ), the process we have con-

structed from our data analysis is an iid discrete random cascade with generator W. A 

more rigorous treatment of the construction and behavior of iid discrete random cas-

cades is the subject of the remaining sections of this chapter. Some notation is devel-

oped and the basic theory is described in the next section. The scaling properties of the 

moments of random cascade measures and their relation to testing the theory and esti-

mating its parameters are presented in Section 3.3. In the final section, issues relating 

to the use of this theory for rainfall modeling and a few examples of cascades relevant 

to modeling spatial rainfall are examined.

3.2  An Introduction to the Theory of Discrete IID Random Cascades

Discrete random cascades with iid generators as they are presented here were in-

troduced by Mandelbrot (1974) as a contribution to the statistical theory of fluid turbu-
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lence. The phenomenology of a self-similar cascade of turbulent eddies has underlain 

turbulence theories at least since the time of Richardson’s famous ditty: “big whirls 

have little whirls that feed on their velocity, and little whirls have lesser whirls and so 

on to viscosity - in the molecular sense” (Richardson 1965; first published in 1922). 

Mandelbrot’s motivation in particular was to test the hypothesis of marginal lognor-

mality of the energy dissipation rate, which had been proposed by Kolmogorov (1962) 

and Oboukhov (1962) and apparently proven for a cascade-like construction by Ya-

glom (1966). Mandelbrot showed, however, that the mathematics of random cascades 

are rather subtle, and that in fact a variety of marginal distributions may be obtained, 

from those that are nearly lognormal to others that are vastly different from lognormal.

The basic theory is developed in Mandelbrot (1974), Kahane (1974), and Peyriere 

(1974). Kahane and Peyriere (1976) summarized the results to that point. They ob-

tained a number of important results regarding the limit of the process as . Be-

fore giving their results, we must develop a some more notation.

The motivation given in Section 3.1 above used rain rates averaged over a box at 

scale λ (denoted ) to describe the cascade because this quantity arises in the data 

that we are considering. However, to describe the mathematical results related to ran-

dom cascades, it is necessary to use the concepts of measure theory, which we briefly 

introduce in Appendix A. Because a measure is a distribution of “mass” or “stuff”, 

rain rate at some scale λ cannot be a measure. Intuitively, this is because a rain rate is 

not an amount of “stuff”, and mathematically, because it fails the additivity criterion 

given by equation (A.1). However, the rain rate is closely related to two physical quan-

tities that are an amount of stuff and thus can be modeled as a measure, which are, 

first, the amount rain falling in some time on some region, or, second, the amount of 

rain falling in some time on some region divided by the elapsed time. Thus the mea-

sure with which we will be concerned is the function that maps (Borel) subsets of the 

λ 0→

Ri λ( )
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earth’s surface to a non-negative real number which denotes the amount of rain falling 

on it in a short time. What we call the rain rate then is simply this measure divided by 

the area (Lebesgue measure) of the corresponding subset. Of course, since the data we 

will be examining is obtained from weather radars, the data actually corresponds to a 

somewhat different measure, namely, the scatter caused by the hydrometeors inter-

sected by the radar beam as it rotates through its scanning pattern, from which the 

amount of rain falling can be estimated. Either measure obviously has a temporal as 

well as a spatial component, but at first we will suppress the temporal aspect and con-

sider only the spatial properties of the measure for a sequence of short time intervals. 

The properties of the temporal evolution of the measure will be considered in Chapter 

5.

An unambiguous presentation of the construction and theory of random cascades 

unfortunately requires some rather cumbersome notation. Things become cumbersome 

because we would like to keep track of the sub-square at all the previous levels that 

leads to a particular sub-square at the level of interest. The presentation here will 

closely follow that of Gupta and Waymire (1995). The case of interest is as in Section 

3.1 a square region of side length , which may be now precisely defined as 

. However, for sake of simplicity of presentation, consider first 

the one-dimensional unit domain . Extension to general  and two-

dimensional domains will be fairly straightforward.

To begin, fix a branching number , an integer. Consider the b-ary expansion 

of the real numbers in the unit interval. This can be written as the sequence 

 where . When the sequence is truncated at 

some level n we will write . Notice this expansion induces an b-ary 

tree, which is sketched in Figure 3.3 for  and . Each unique (infinite) se-

quence t designates a different path through this tree, of which there are uncountably 
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many, since there are uncountably many real numbers in any interval. For finite n, 

there are  truncated paths , denoted , .

Next associate with each finite path  the sub-interval

(3.14)

(again see Figure 3.3). Notice the , , are disjoint sets which gener-

ate a partition of the unit interval with resolution , i.e.,  and 

. When the path to a sub-square at level n is not of concern, we 

simply denote the ith such sub-square by , .

Finally associate with each finite path independent and identically distributed 

non-negative mean one random weights denoted . A generic random 

variable with the common distribution of the  will be denoted simply as W and will 

be called the generator of the random cascade. The weights  are used to multipli-

catively generate a measure on J as shown in Figure 3.4.

In order to explain Figure 3.4, we must first backtrack and consider a generaliza-

tion of the discrete iid random cascade construction, called a positive martingale, 

which is constructed as follows. First, assign an arbitrary (finite) initial mass distribu-
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tion (measure)  to J. Next define , the mass distribution at level n, by the integral

, (3.15)

where A is a (Borel) subset of J and  is a martingale sequence in n for all x with

. (3.16)

A martingale sequence (or simply martingale) is a sequence of random variables, 

, , , with an associated sequence of events , ,  in the probability 

space on which the random variables are defined, such that the following conditions 

hold:

(a) ;

(b) the set of events  determines the value of ;

(c) ; and

(d)  with probability one.

Martingales sequences have convergence properties that make possible the final 

step in the construction, which is to take the limit , i.e., consider the measure

. (3.17)

For the existence of the limit measure defined by equation (3.17) see, for example, Ka-

hane (1989) or Waymire and Williams (1995) and references therein.

The positive martingale construction may be reduced to a random cascade as fol-

lows. First, take the initial mass distribution  to have a uniform density . Second, 

specify the martingale sequence  to be

µ0 µn
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, (3.18)

where  are iid with . Notice that this way of specifying  makes 

two important assumptions: first, independence of  from level to level, and sec-

ond, a conservation condition induced by , which in turn implies that 

 and that .

Finally  may be defined in terms of the iid weights  assigned to the re-

cursive subdivision of the domain J defined by the sub-intervals  as follows:

(3.19)

Figure 3.4 is a schematic of this construction. Figure 3.4(a) shows the construc-

tion of the  from the weights  for  while Figure 3.4(b) shows the 

 that result from application of equation (3.18) to the  shown in Figure 

3.4(a). Notice that in specifying  in this way, we are making many assumptions. 

In general,  could be an arbitrary non-negative stochastic process as along as the 

condition  and independence from level to level are preserved. Thus for 

the discrete iid random cascade construction, the  are piecewise constant over 

the sub-intervals  so that

. (3.20)

Before giving further specific results regarding discrete iid random cascades, con-

sider the generalization of this construction to the two-dimensional domain 

. In general, the branching number is the ordered pair , 
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where  and  are integers greater than or equal to two, but we will only consider 

the case where  for some integer and perfect square b, with . 

The infinite paths

 , (3.21)

where

 , , (3.22)

and likewise for , now give a -ary expansion of a real number in the square 

. A finite path  is now simply , where

, (3.23)

and likewise for .

The sub-square of J associated with a finite path  is given by the Cartesian prod-

uct

 , (3.24)

where

. (3.25)

A sub-square at level n has a side length of , or a normalized side 

length of .

We can now proceed to give specific results concerning a discrete iid random cas-

cade on the domain  with an initial mass distribution having a constant 

density , which is our primary case of interest. Then . From equa-
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tion (3.20), the mass in the box  is given by

. (3.26)

Notice in equation (3.26) the presence of the normalizing factor , which corrects 

the mass for the decreasing size of the box as n increases, whereas such a correction 

would not be necessary for the sequence of rain rates. Recall that the  are iid non-

negative mean one random variables. Because the  are identically distributed, the 

masses  for all sub-squares  are identically distributed. As such, the par-

ticular sub-square is not important for present purposes so we write  for the ith box 

at level n and  for the mass in it. This mass is distributed as

. (3.27)

We use the notation W to refer a generic random variable with the distribution of the 

, the generator of the random cascade.

Taking the limit  yields the limit measure . Choose a sub-square at lev-

el n with mass . The cascade below this sub-square is just an independent cas-

cade with the same generator and initial mass . Thus there is a very recursive 

character to a random cascade. This results in the following recursion relation (Holley 

and Waymire 1992)

, (3.28)

where the random variables  are mutually independent, identically distributed 

as  for all i and all n, and are independent of the . Like the , 

the  are identically distributed, so we will denote by  a generic random vari-

able with the distribution of the . Equation (3.28) indicates that in the limit, the 
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mass in a sub-square is given by the product of a large-scale component  and a 

small-scale component . Thus it gives an explicit representation of the effect of 

“subgrid-scale variability” that is so sought after in turbulence theory and environmen-

tal modeling.

If we set  in equation (3.28), sum over all i, and note that  

and  in distribution, we obtain a means of obtaining (in principle, at 

least) the distribution of  from the distribution of W (Holley and Waymire 1992):

. (3.29)

To my knowledge, the distribution of  has been obtained explicitly for only one 

class of cascades, but equation (3.29) can also be used to find the integer moments of 

 in general. This calculation is given in Appendix C, as it is rather long, but we will 

use the result below.

The above notation and a few results provides the necessary background for the 

basic results of Kahane and Peyriere (1976) regarding the limit measure. First, we 

must define the so-called MKP (Mandelbrot-Kahane-Peyriere) function:

. (3.30)

As we shall see, the MKP function contains a great deal of information about the ran-

dom cascade generated by W. Two basic facts about MKP functions are that they are 

convex and . As defined by Mandelbrot (1974), there are three basic classes 

of MKP functions, depending on the existence of the moments of , and designated 

as regular, irregular, and degenerate. Schematic MKP function for each of these three 

types are shown in Figure 3.5.

Now we are truly ready to give the results of Kahane and Peyriere (1976) regard-

ing the limit measure of a random cascade. Their results concern three properties of 
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Figure 3.5  Three classes of MKP functions
(a) regular, (b) irregular, (c) degenerate (after Mandelbrot (1974))
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the limit measure: (a) the non-degeneracy of the limit mass  - under what condi-

tions is it possible that the limit mass is greater than zero; (b) the divergence of statisti-

cal moments of the limit mass; and (c) the dimension of support of the limit measure.

 Theorem 3.1 (Kahane and Peyriere 1976). Let W be the generator of a discrete iid 

random cascade with MKP function  and branching number b, then

(a) If , then  and .

(b) For ,  has a finite moment of order q if and only if , where 

. Moreover,  exists for all  if and only if W is 

essentially bounded by b and .

(c) If , then the limit measure  is almost surely supported by 

a Borel subset of J of Hausdorff dimension .

Definitions of a few terms in this theorem are probably in order before proceeding 

to any discussion. In part (b), “essentially bounded by b” means that the probability 

that W exceeds b is zero and  denotes the “infimum” of the set A, which is a 

generalization of the notion of a minimum and is defined in Appendix B. In part (c), 

note that Borel subsets are defined in the introduction to measure theory in Appendix 

A. Hausdorff dimension is a generalization of the notion of Euclidean dimension and 

is also defined in Appendix B. The “support” of a measure is formally the smallest 

closed set A such that , where  denotes the complement of the set A 

with respect to the space J (i.e., ), so the support is the closure of the subset of J 

where the measure “lives”.

Now for some discussion. Part (a) indicates that if the slope of the MKP function 

at  is negative, then the expected value of the limit mass is positive, and in par-

ticular one. The MKP function in Figure 3.5c fails this criterion and thus indicates a 

degenerate cascade, while those in Figure 3.5a and Figure 3.5b fulfill it. In non-degen-

erate cascades whose generators include an “atom” at zero, as we shall see, the limit 
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mass may still be zero with positive probability, but it would be degenerate if it were 

zero with probability one. Part (b) gives necessary and sufficient conditions on the ex-

istence of the moments of the limit mass, one for moments in the range , and 

the other for all moments . As shown in Figure 3.5, the critical moment  is in-

finite (all positive moments exist) for the regular class, while for the irregular class  

is finite, and it is undefined for the degenerate class. Part (c) gives the Hausdorff di-

mension of the support of the limit measure. The condition  cannot 

be checked directly from the MKP function like the other conditions in this theorem, 

because as we noted, while the distribution of  is given in principle by the solution 

of equation (3.29), it has been solved only in a certain special cases. However, 

Waymire and Williams (1995) note that Kahane (1989) found a way to remove this 

condition. So we will not concern ourselves with it.

The Hausdorff dimension of the support of the limit measure may be used to 

prove the singularity of the limit measure with respect to Lebesgue measure. A mea-

sure µ is singular with respect to another measure ν if there exist sets  and  such 

that , , and , where  denotes the complement of 

S (Billingsley 1986, p. 442). The singularity of the cascade limit measure follows from 

the fact that any subset of Hausdorff dimension  has d-dimensional Lebesgue 

measure zero. This is because Hausdorff measure, properly normalized, is identical to 

Lebesgue measure (see Appendix B), and the Hausdorff dimension of a set in  is 

given by the exponent D such that  where the Hausdorff measure jumps 

from infinity to zero. Thus when , the d-dimensional Hausdorff measure is zero, 

implying that d-dimensional Lebesgue measure is also zero. Thus the support of any 

iid discrete random cascade has Lebesgue measure zero unless the MKP function has 

slope , which only occurs in the trivial case where  with proba-

bility one. Hence consider the two measures , the cascade limit measure, and Λ, d-
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dimensional Lebesgue measure. Denoting the support of the random cascade limit 

measure by , then  by the definition of the support of a measure, and 

 when , and by definition , thus satisfying the defi-

nition of mutually singular measures.

Perhaps it seems strange to suggest that it rains only in a region of zero area. Two 

complementary responses can be made. First, one should not expect to directly ob-

serve it to be so, since all observation involves averaging over some region. Second, 

apart from observation, the physical implications of this kind of result are usually 

avoided by recognizing that there is a minimum scale below which the cascade struc-

ture no longer holds. In the study of fluid turbulence, the minimum scale is fairly well 

understood as the scale where dissipation due to viscosity overcomes and smooths out 

the cascade of turbulent eddies. In convective rainfall, one might expect that the size 

of a convective cell (on the order of 2 km in diameter) would constitute a minimum 

scale. Unfortunately, this scale is approximately the same as the reliable resolution of 

a weather radar, so it is difficult to empirically test this hypothesis. We discuss in 

Chapter 4 evidence for a break in scaling at about 2 km that is suggested by the present 

analysis.

3.3  Estimation and the Moments of Discrete IID Random Cascades

3.3.1  Marginal Moments

The centrality of the MKP function  to the study of random cascades is de-

rived not only from the convenience of the statement of results regarding the moments 

of the limit mass  as in Theorem 3.1, but in applications even more so from the fact 

that it describes the scaling of the ensemble moments of the cascade measure. To show 

this, we first define the scaling of the ensemble moments as

Sµ∞
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, (3.31)

where

. (3.32)

By equation (3.27)

, (3.33)

so

(3.34)

(3.35)

. (3.36)

This result is significant because it provides a way of estimating the generator W in 

physical situations where a large number of presumably iid realizations of random 

fields are available (e.g., fully developed turbulence). In this case, the ensemble aver-

age moments can be estimated and their scaling computed to give an estimate of the 

MKP function.

The situation in rainfall is somewhat different. It is difficult to justify a priori the 

assumption that a sequence of instantaneous rainfall fields is homogeneous. Instead, 

one would like to estimate the MKP function from the scaling of the moments for each 

field in the sequence to construct a sequence of estimated MKP functions. This re-
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quires a somewhat different theory. We denote what we will call the scaling of the 

spatial average moments, that is, the scaling of the moments from a single spatial 

field, by the function  and define it as

. (3.37)

Conditions under which it has been shown that this limit exists and equals the scaling 

of the ensemble average moments are given by the following theorem.

 Theorem 3.2 (adapted from Holley and Waymire 1992). Consider a discrete iid 

random cascade with generator W and branching number b. For moments q where

(3.38)

and

, (3.39)

then

, (3.40)

where d is the dimension of the domain J of the cascade.

Furthermore,

, (3.41)

where  is a random variable for each q.

So, according to theorem, while the moments of a single realization of a cascade 

measure do not converge to their expected values, the scaling of the moments do (un-
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der certain conditions), and thus the generator can be estimated from a single realiza-

tion. The moments (normalized by their expected values) do converge, but not to a 

constant, rather to a random variable denoted here by . This fact demonstrates the 

non-ergodicity of the cascade limit measure.

A few comments regarding this theorem are in order. First, the theorem stated in 

Holley and Waymire (1992) from which this theorem is adapted (Theorem 2.7, p. 830) 

includes a rather restrictive condition called strong boundedness, which, among other 

things, excludes generators with atoms at zero (that is, ). However, the 

proof in Holley and Waymire (1992) does not require this condition, so the less restric-

tive condition (3.39) is substituted.

Second, let us consider the range of q for which the conditions of the theorem are 

satisfied. Let us restrict ourselves to non-degenerate cascades (i.e., ) and . 

We make the latter restriction because negative moments are unusable in analyzing 

data, since they only serve to amplify the noise that is invariably present. We first note 

that from the definition of the MKP function that the moment ratio condition is equiv-

alent to the condition

. (3.42)

Since we have assumed a non-degenerate cascade ( ), consider first the con-

dition . Then  if and only if . However,

, (3.43)

so the moment ratio condition is satisfied for . Thus for , the 

 condition is the more restrictive condition. Thus when we consider the ap-

plicability of Theorem 3.2 for specific models and we have , we need con-

sider only the condition . In particular, the conditions of Theorem 3.2 will be 
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satisfied for .

For , it is easy to verify that both conditions hold only for . Thus this 

case can be combined with the previous case, yielding the result that the conditions of 

Theorem 3.2 will be satisfied for  when .

When ,  still holds if and only if . However, at 

, the moment ratio condition fails, since

 . (3.44)

Thus when , the moment ratio condition determines the applicability of Theo-

rem 3.2. Since this condition depends on the form of the MKP function, the complete 

range of q where the conditions of Theorem 3.2 are satisfied cannot be determined in a 

model-independent way as was possible for , and thus we will investigate 

this on a case-by-case basis when . At a minimum, we can show in general that 

the conditions of Theorem 3.2 are satisfied for , since then the moment ratio con-

dition is satisfied since  and .

To summarize, for non-degenerate cascades, the conditions of Theorem 3.2 are 

satisfied if and only if q is in the half-open interval  when , and for q 

in at least the closed interval  when .

Third, the theorem gives convergence in the limit  (i.e., ). Infinite 

resolution data is obviously unavailable. An approximate theory based on the infinite 

resolution result is required for data analysis. Taking logs of both sides we rewrite 

equation (3.41) for large but finite n as

. (3.45)

Now, since  and  using Theorem 3.2, we can rewrite equa-

tion (3.45) as
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. (3.46)

This is the fundamental data analysis relation. Using it, we expect that if our data came 

from a random cascade satisfying the conditions of Theorem 3.2 that plots of 

 versus  will be linear with slopes giving an estimate of  and in-

tercepts estimating the sum of the remaining terms in equation (3.45). Thus the linear-

ity of such plots provides a test of applicability of any random cascade to the data, 

while the slopes give an estimate of the function , and thereby, in principle, an es-

timate of the generator W because of equation (3.40). The significance of deviations 

from linearity are difficult to evaluate quantitatively, since the necessary theory has 

not been developed. In Chapter 4 we apply this test by computing a measure of the 

goodness of the log-log linear fit for the data and compare it to the same measure com-

puted from simulated cascades.

The intercepts provide a further test, though also not without difficulties. From 

equation (3.45), the intercept which we denote by  gives an estimate of

. (3.47)

The difficulties arise for the following reasons. First, we do not know the distribution 

of , let alone , though since , we 

might expect a central tendency of  near 0. This expectation is borne out in 

simulations, as we shall see in Chapter 4. Second, we must estimate the  

term, because the cascade conserves mass only on the average. Since

, (3.48)

we estimate  by . Finally, the  term is difficult to estimate. Its val-

ue (see Appendix C) depends not only on the moments of the generator, for which 

Mn q( )log Y q( )log q µ0 J( )log EZ∞
q

log τ q( ) λnlog–+ +≅

Mn q( )log λnlog– τ q( )

τ q( )

I q( )

I q( ) Y q( )log q µ0 J( )log EZ∞
q

log+ +≈

Y q( ) Y q( )log EYn q( ) E Mn q( ) EMn q( )⁄[ ] 1= =

Y q( )log

q µ0 J( )log

E µ∞ 0 lmax,[ ]2
( )[ ] E Rlmax

2[ ] R0lmax
2 µ0 J( )= = =

µ0 J( ) Rlmax
2

EZ∞
q

log



55

 provides an estimate, but also on the value of the branching number b, which is in 

principle non-estimable. However,  can often be argued (see Figure 4.6) to be 

small relative to the other terms in equation (3.47). Because of these difficulties, as 

well as additional ones introduced by the “off-grid” nature of the data described be-

low, we will use simulations to generate a set of intercepts to which those from data 

can be compared.

Simulations are also required to apply this theory to data for a more fundamental 

reason which can be described as follows. Notice that the scaling of moments function 

 is computed by integrating over the same boxes  that were used to generate 

the cascade. Thus Theorem 3.2 depends on this fact, and it is unclear whether the the-

orem will hold if the location of the boundaries of the boxes that generated the cascade 

are unknown, or if they do not exist at all, as one might suppose would be true of data. 

While perhaps analytical approaches to this problem can be worked out (as indeed has 

been done to a degree in the case of Kahane’s (1985) analysis of Mandelbrot’s (1972; 

1983, pp. 379-380) “continuous” lognormal cascades, though they do not give a spa-

tial moment result like Theorem 3.2), the sensitivity of the results to various spatial 

subdivision methods can be easily explored using simulated cascades. Simulation 

methods and results will be given preceding the data analysis in Chapter 4.

3.3.2  Derivatives of the Marginal Moments

The first and second derivatives of the MKP function will be used below for the 

purposes of estimating its parameters and testing its linearity. In addition, while we 

will not use the “multifractal spectrum ” of the general theory of multifractals 

here, it is the Legendre transform of  (Falconer 1990, ch. 17), hence when  is 

differentiable,  is given by . In fact, because of this, the estimation meth-

od we will give for the derivatives of  was originally developed as part of a means 

of estimating  and , since direct methods are subject to the need for logarith-
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mic corrections and other difficulties (Chhabra and Jensen 1989).

The method is obtained from the definition of  (equation (3.40)) by differenti-

ating, i.e.,

(3.49)

. (3.50)

Similarly, the second derivative of  is estimated as

(3.51)

. (3.52)

In actual practice, of course, the small-scale limit is not attainable, and a straight-line 

fit of the sums versus  is used to estimate the derivatives of , in the same 

way as with the estimate of  itself. A proof that the derivative and limit can be ex-

changed as was done in going from equation (3.49) to equation (3.50) and from equa-

tion (3.51) to equation (3.52) has not been worked out, but the results obtained by this 

method and those from numerical differentiation of the estimated  curve were 

compared and were found to be quite similar.
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3.3.3  Cross Moments

In many applications of random measures (e.g., the statistical theory of turbu-

lence), the spatial correlation or cross moment properties are very important. In turbu-

lence theory, two-point cross moment properties have been computed by a number of 

authors for multifractal or cascade-like constructions via heuristic arguments (Yaglom 

1966; Cates and Deutsch 1987; Siebesma and Pietronero 1988; Lee and Halsey 1990; 

Meneveau and Chhabra 1990). To our knowledge, a rigorous calculation has not been 

previously performed. We will present results only for the simplest case, two masses 

at the same level of a d-dimensional random cascade with a separation vector 

, i.e., the separation distance is zero in all but one of the d dimen-

sions. Solution of this simple case will be enough to make an important consistency 

check on the rainfall data. More general calculations involving more than two masses, 

more than one level, and separation vectors involving more than one non-zero element 

have been carried out but are not yet published (B. M. Troutman, personal communi-

cation).

As in the case of the marginal moments, we will first compute the ensemble aver-

age or expectation of the cross moments. Following that, the question of whether the 

sample cross moments can be shown to converge in any sense to the ensemble average 

cross moments will be examined. As we will suggest but not prove rigorously, the 

cross moments mimic the marginal moments with regard to this question: the scaling 

of the sample cross moments does converge to the scaling of the ensemble average 

cross moments.

The (normalized) ensemble average cross moments are as follows. The calcula-

tion is presented in Appendix D, as it is rather lengthy.

r r 0 … 0, , ,( )=
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, (3.53)

where

, (3.54)

, (3.55)

and  denotes the limit measure in a box at level n chosen randomly from 

among the boxes where . Then  is the limit measure 

in a box a distance  away. Note that in using  we are assuming 

; in general we would have  for a d-dimensional cascade where  

branchings occur at each level in each dimension.

The interesting part of the behavior of the cross moment is its -dependence, 

which is evidently approximately power law with exponent

. (3.56)

Approximate power law dependence on  depends on the fact that for n large, 

, and in for many generators of interest  (see Appendix 

D for discussion), so

. (3.57)

The cross-moment exponent  can also be written in terms of the MKP 

function  as
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. (3.58)

If Theorem 3.2 holds, we have for  that , so equation (3.58) can 

be re-written as

. (3.59)

This relation provides a consistency check between the marginal and cross moments 

of empirical data.

Equation (3.59) is also suggestive that the exponents  of the spatial 

cross moments (i.e., those from a single realization) might converge under certain con-

ditions to the their ensemble average values, which is our next subject.

The following hypothesis is due to B. M. Troutman and A. V. Vecchia (personal 

communication). It has not been proven but it can be tested for large but finite n using 

simulated cascades.

Hypothesis: Under certain conditions on the generator W,

. (3.60)

This hypothesis is suggested by equation (3.53) by replacing the ensemble averages on 

the left-hand side with spatial averages. As usual, in finite resolution data or simula-

tions, a relation such as equation (3.60) is tested by assuming that the ratio on the left-

hand side is sufficiently close to convergence that log-log linearity will hold in plots of 

the numerator versus the denominator, whose slope then gives an estimate of the expo-

nent on the right-hand side. This procedure was used on simulated cascade realizations 

to test the hypothesis and is used to explore the cross moment behavior of rainfall data 

in Chapter 4.

κ
b

p q,( ) 2 χb p q+( ) χb p( ) χb q( ) 1+––( )=

d 2= τ q( ) 2χb q( )=

κ
b

p q,( ) τ p q+( ) τ p( ) τ q( ) 1+––=

κ
b

p q,( )

1

b
n

b
m

–
-----------------⎝ ⎠

⎛ ⎞ µ∞
p ∆n

i
( )µ∞

q ∆n
i bm+( )

i 1=

bn bm–∑

b
n– µ∞

p q+ ∆n
i

( )
i 1=

bn

∑
---------------------------------------------------------------------------------------log

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

rnlog–( )⁄
n ∞→
lim R p q,( )blog–=



60

3.4  Some Modeling Considerations

In this section we consider some issues in the application of discrete random cas-

cades as defined and described above to modeling spatial measures. In the first subsec-

tion a few facts about the spatial structure of discrete random cascades arising from 

their discreteness (in space and scale) that make their literal application to spatial mod-

eling problematic are examined and solutions are proposed. In the second subsection, 

the features of generators appropriate to modeling spatial rainfall are examined in gen-

eral and through a few specific examples.

3.4.1  Difficulties Arising from Discreteness

3.4.1.1  Nonhomogeneity and Anisotropy

As noted above, the limit measure of a cascade is singular and hence does not 

qualify as a (random) function. However, if the cascade measure is integrated over its 

boxes

, (3.61)

at a finite resolution, it can be treated as random function or stochastic process on a fi-

nite lattice, where a point in the lattice is associated with the center of each box. Con-

sider the properties of the resulting process

, . (3.62)

Recall that a stochastic process is homogeneous if the joint distributions of the 

random variables making up the process are invariant under translation and it is isotro-

pic if the joint distributions are invariant under rotation. The joint distributions of the 

masses are composed of the marginal distributions of the masses, which in this case 

are identical, and the dependency between them. The dependency of two masses in the 
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process given by (3.62) is determined by the number of common multipliers. To see 

this, consider two masses  and , with . Recall that these are given 

by

, (3.63)

and likewise for . For each mass, the multipliers  are independent, but up to 

 of them may be common between the two masses (the multiplier  cannot be 

in common, and the high frequency factors are likewise always independent). How the 

number of common multipliers is distributed in space determines the homogeneity and 

isotropy properties. In Appendix D this fact is used to compute the two-point spatial 

cross moments  of the process (3.62).

As an example, consider the boxes from a cascade with  integrated up to 

 as shown in Figure 3.6. It should be clear that the masses in each first-level box 

(demarcated by heavy lines) have one common multiplier, while those from different 

first-level boxes have no common multipliers. Thus the joint distributions of masses 

within one of the first-level boxes are of one type (dependent), while those that involve 

masses from more than one first-level box are of another type (independent). The ho-

mogeneity and isotropy properties of the integrated cascade follow from this.

Taking homogeneity first, consider two of the two-point joint distributions of the 

masses in the boxes labeled in Figure 3.6, mass i with mass j ( ) and mass j with 

mass k ( ). First notice that the lattice itself limits separation and translation dis-

tances to integer multiplies of the lattice spacing, and limits the direction of separation 

and translation to the axes of the lattice. But even under these conditions, the process 

fails to be homogeneous, because  involves masses from different first-level boxes 

while  does not. Hence the integrated cascade fails to be invariant under transla-
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tion and is thus is a nonhomogeneous stochastic process. Because the individual mass-

es are identically distributed, however, we might say the process is “marginally” 

homogeneous.

As regards isotropy, consider the joint distributions of mass i with mass j ( ) 

and mass i with mass l ( ) in Figure 3.6. Notice again here the constraints of the lat-

tice in which we can only consider directions along one of the axes. Again even under 

these constraints the process is anisotropic because  involves masses from differ-

ent first-level boxes and  does not.

In applications, we may find that we want a random field model that is anisotropic 

and nonhomogeneous, but in a way that is controllable using model parameters, not 

simply inherent to the model, and we would most likely want to use a homogeneous 

and isotropic model as a null hypothesis unless physical considerations determined 

otherwise. So the failure of discrete random cascades to be homogeneous or isotropic 

is a serious concern, but it is not too serious because homogeneous and isotropic cas-

i j k
l

Figure 3.6  Cascade grid for b=9 and n=2

Fi j,

Fi l,

Fi j,

Fi l,
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cades can be constructed by making the method of spatial subdivision at each scale ho-

mogeneous and isotropic. We will describe a method of doing this in the following 

chapter. The difficulty with this method is that analytical calculations have not been 

carried out. Thus our approach will be to use the method to simulate homogeneous and 

isotropic cascades and then use the simulations to determine if the analytical results 

that have been obtained for discrete cascades on a square lattice still hold.

3.4.1.2  “On-grid” versus “Off-grid” Cascades

Even if one expected his data to arise exactly as a discrete random cascade with a 

particular branching number in square boxes on a regular lattice, it would be impossi-

ble to directly employ the regular lattice theory because one would not know the loca-

tion or orientation of the lattice in the data. And it would be necessary to know this, 

since the theory described above, most importantly Theorem 3.2 that allows estima-

tion of the MKP function of the generator of a cascade from the scaling of the mo-

ments of the cascade limit measure, applies strictly only to the cascade limit measure 

integrated over the exact boxes ,  that subdivide the cascade domain J 

at each level n. In other words, in the basic representation of the integrated limit mass,

 , (3.64)

the boxes ,  over which the limit measure is integrated must be the 

boxes used to subdivide the domain at level n. They cannot be any collection of square 

sets of side length  that covers the domain, let alone non-square sets.

When a cascade limit measure is sampled by integrating over the boxes used to 

generate it, we will say this is an “on-grid” cascade, while if it is sampled otherwise, 

we will call it an “off-grid cascade”. Obviously any sampling of real data is an off-grid 

cascade if it is a cascade at all; on-grid cascades can only be obtained by simulation.

In addition, it is by no means clear that such a lattice of boxes ever did exist in the 

∆n
i

i 1 … b
n, ,=

µ∞ ∆n
i

( ) µn ∆n
i

( )Z∞ ∆n
i

( )=

∆n
i

i 1 … b
n, ,=

lmaxb
n d⁄–



64

generation of any real-world data set. The spatial structure used to generate a cascade 

is merely a phenomenology suggested by a mathematical construct that leads to spatial 

mass distributions that have certain properties in common with the data, of which the 

square gridding is not one. In the rainfall context, the binning of the radar data consti-

tutes the imposition of a square grid of essentially random orientation and location 

onto a field which, as noted above, we would like to assume as an initial hypothesis to 

be homogeneous and isotropic. This difficulty can also be overcome by the use of sim-

ulations of the type discussed above.

3.4.1.3  The Role of the Branching Number

The two difficulties discussed above arise from the most-likely unphysical spatial 

subdivision method used to generate regular lattice discrete random cascades. A diffi-

culty also arises from the choice of a branching number (which amounts to discrete-

ness in scale), which is, that we have presented no means of estimating it. To see this, 

notice that a value for b must be assumed in order to compute , which gives by 

Theorem 3.2 the MKP function as a function of this assumed b. If it were true that the 

distribution of any random variable W satisfying the requirements of a cascade genera-

tor could be made a function of b for any  in such a way that the cascade limit 

measure did not vary with b, then the value of b would be truly arbitrary and ignorance 

of it would be of no concern. However, we will show next that (1) the limit measure 

depends on the value of b directly, not only through the MKP function; and (2) if we 

limit the arbitrariness of b to invariance of the MKP function rather than the limit mea-

sure itself, then only a certain class of generators are allowable, which are said to be 

log-infinitely divisible.

To show that the limit measure depends on the value of b directly as well as the 

MKP function, consider the moments of the limit mass  as computed in Appendix 

C. In particular, consider the second moment

τ q( )

b 1>

Z∞
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. (3.65)

Since  then  and

. (3.66)

Since  if and only if , thus even if W and b are adjusted to-

gether so that the MKP function is invariant, the distribution of the limit mass and 

hence the limit measure depends on b directly for any non-trivial cascade. This fact 

would actually provide a means of estimating b from the distribution of  obtained 

from an “on-grid” cascade, but, as argued above, we will not find on-grid cascades in 

real data nor do we expect it to have some fixed b.

If we do not worry about all the properties of the limit mass, but just ask that W is 

such that the scaling properties of the limit measure as captured by the MKP function 

can be made invariant under changes in b, it turns out that this is equivalent to requir-

ing that W be of the form

, (3.67)

where X has an infinitely divisible distribution. Following Waymire and Williams 

(1993), we say in this case that the distribution of W is log-infinitely divisible.

A probability distribution Q is said to be infinitely divisible if for all , it can 

be factored as an n-fold convolution of a probability distribution . It follows from 

this definition that the characteristic function

(3.68)

of an infinitely divisible distribution has the property that  is also the character-
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istic of an infinitely divisible distribution for any real, positive t (Lukacs 1970, p. 111). 

Using this result, it follows that given an infinitely divisible distribution Q, there is a 

family of (infinitely divisible) probability distributions , , such that  

and . For ,  can be obtained from the characteristic function

(3.69)

where  is a random variable with distribution  (Bhattacharya and Waymire 1990, 

p. 349).

Now consider the family of distributions of the random variables  

where  (then  requires ) and  has a distribution that is a member 

of an infinitely divisible family as described above. When the expectations exist, the 

representation (3.69) can be written as

, (3.70)

or, in terms of ,

. (3.71)

With a little algebra, equation (3.71) can be re-written as

, (3.72)

which shows that the MKP function of  with branching number b is the same as 

that of  with branching number e. Notice taking  in equation (3.71) shows 

that the mean one condition on cascade generators is preserved by this transformation.

The above argument shows that the log-infinite divisibility of the distribution of 

 induces a family of probability distributions of random variables , , with 
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invariant MKP functions. Reversing the steps of the argument shows that the assump-

tion of invariant MKP functions implies the log-infinite divisibility of the distribution 

of .

The upshot of this is that only if W is taken to have a log-infinitely divisible distri-

bution can it be transformed as a function of b such that the MKP function does not 

change. Since b is in fact unknowable in applications, this is a crucial property for cas-

cade generators used in spatial modeling to have. In light of this, we will consider in 

what follows only cascade generators with log-infinitely divisible distributions. We 

will examine below in detail three log-infinitely divisible generators. In order to ana-

lyze these, we need two more facts about infinite divisibility:

(a) If a random variable X has an infinitely divisible distribution, then  

also has an infinitely divisible distribution, for any real number a.

(b) If two independent random variables X and Y have infinitely divisible distribu-

tions, then the sum  has an infinitely divisible distribution, i.e., the class of infi-

nitely divisible distributions is closed under finite convolutions (Lukacs 1970, p. 109). 

This implies that for two independent random variables  and  with log-infinitely 

divisible distributions, the product  has a log-infinitely divisible distri-

bution.

3.4.2  Some Relevant Examples of Generators

3.4.2.1  General Results for Generators with Atoms at Zero

A very important feature of the cascade theory for applications to spatial rainfall 

is that it can model regions of zero rain rate. This is accomplished by allowing the gen-

erator W to have a so-called atom at zero, i.e.,

 and , (3.73)
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where  is the positive part of W (i.e., ). The parameter β will be re-

stricted to be non-negative because we need .

The following very simple observation will be central to all that follows. A gener-

ator W with an atom at zero can thus be written as the composition  where

(a) B and Y are independent cascade generators;

(b) B has the distribution  and ; and

(c)  (in particular, ).

Using the composition theorem of Waymire and Williams (1995), a composition of 

cascades may be defined equivalently as the cascade that results from using a genera-

tor that is the product of two independent cascade generators, as  here, or, the 

cascade that results from using the limit measure of one cascade as the initial measure 

for the second, independent, cascade.

Since B has a log-infinitely divisible distribution (Waymire and Williams 1993), 

if Y has a log-infinitely divisible distribution, then so does W because the class of infi-

nitely divisible distributions is closed under convolution. Several choices for the distri-

bution of Y will be considered below.

The MKP function for a generator whose distribution is given by (3.73) is

(3.74)

. (3.75)

In terms of Y this is
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. (3.78)

The values of the MKP function at  and  are particularly useful. We have

 (3.79)

and

. (3.80)

The MKP function at  implies

 and . (3.81)

In view of equation (3.40), equation (3.79) provides a means of estimating the param-

eter β:

. (3.82)

Additional ways of estimating β will be considered below.

Because the generator W in this case can take on the value zero, the limit mass can 

be zero without the cascade being degenerate (see Theorem 3.1a for the definition and 

a criterion for degeneracy). The probability that  is computed by Holley and 

Waymire (1992) and is given by the smallest positive solution to

, (3.83)

where .

Several specific choices for the distribution of Y are considered next.

3.4.2.2  The Beta-Model

If  (or, equivalently,  is specified by an atom at its expected val-
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ue ), then the representation given by (3.73) can be further simplified, yielding

 and , (3.84)

with an MKP function given by

. (3.85)

Notice that in this case the generator W is completely parameterized by β. A determin-

istic cascade with this generator was first proposed as a model for the spatial structure 

of energy dissipation in fluid turbulence by Novikov and Stewart (1964). Because it 

has a single parameter that has been traditionally denoted by β, this model is often 

called the β-model, a usage that is adopted here.

It is easy to see from equation (3.85) that the slope of the MKP function in the 

case of the β-model is constant and is given by

, (3.86)

which shows, using Theorem 3.1a, that we must have  to obtain a non-degener-

ate cascade. As shown in Over and Gupta (1994), the MKP function of an iid random 

cascade has a constant slope if and only if it has a β-model generator. Equation (3.86) 

suggests another estimate  for β in the case of a β-model generator, derived from the 

slope of the  curve at q:

. (3.87)

It can also be shown from the MKP function of the β-model (equation (3.85)) that 

it satisfies the conditions of Theorem 3.2 for all . To do so, first notice that this 

model satisfies the condition for the existence of  for all  from Theorem 

3.1b for any . Next recall that the moment ratio condition in terms of the MKP 
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function is

. (3.88)

In terms of the β-model MKP function, this is

, (3.89)

which implies

, (3.90)

or

, (3.91)

which is satisfied for any . Thus in principle Theorem 3.2 may be used to esti-

mate the MKP function for a β-model for any q.

We shall see in Chapter 4 that this very simple model gives a good approximation 

to the spatial structure of convective rain rates. However, this simple assumption does 

not hold in exactly and in general Y must have some variance. So we give next two ex-

amples of Y with log-infinitely divisible distributions that have non-zero variance.

3.4.2.3  The Log-Poisson Model

The first example is the following log-Poisson form patterned after the generator 

introduced into the theory of turbulence by Dubrulle (1994) and She and Waymire 

(1995):

, (3.92)

where a and γ are free parameters and  is a Poisson random variable with parameter 

λ, whose value, as we shall see, is determined by the other parameters. Since  is 
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Poisson, this generator takes on a countably infinite number of discrete values and its 

distribution is log-infinitely divisible. The parameters a and γ under various conditions 

can take on positive or negative values, but they have certain inter-relationships that 

should be noted. When , Y reduces to an atom at , so we must have  in 

order preserve , giving again the β-model. When , Y has the minimum 

value , hence we must have  in order to have . And when , Y has 

the maximum value , so  is required for .

The MKP function for this model may be computed as follows. Referring to the 

general representation for generators with an atom at zero (equation (3.78)), we see 

that the value of  is needed. To compute this, notice

. (3.93)

Since by assumption  is Poisson with parameter λ, we have

, (3.94)

so

, (3.95)

so we have

, (3.96)

and the MKP function is given by
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. (3.97)

The parameter λ is determined by the condition ,

, (3.98)

which implies

, (3.99)

so the MKP function can be written

. (3.100)

We will use the first two derivatives of the MKP functions in several ways below, 

so we compute them now:

(3.101)

and

. (3.102)

Cascades with log-Poisson generators can exhibit a large range of properties, and 

now that we have computed the MKP function and two derivatives, some discussion 

of these properties for various values of the parameters is in order. Consider first the 

case . As noted above, in this case, the maximum value of Y is  (hence the 
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maximum of W is ), and as X is gets large, Y approaches zero. Hence according 

to equation Theorem 3.1b, for , the cascade limit mass  will have moments of 

all orders if , and will not if .

Now consider the case . Then the minimum value of Y is given by  (hence 

the minimum of  is ) and the maximum value diverges to infinity. Thus such 

cascades cannot satisfy the conditions on the existence of all moments of the limit 

mass. These cascades can also fail the non-degeneracy condition. The non-degeneracy 

condition (see Theorem 3.1a) is

. (3.103)

This shows that for given γ, a and b, a critical  can be defined where for , the 

non-degeneracy condition will fail, i.e., 

. (3.104)

For example, take ,  and , then the cascade limit measure is de-

generate for

 . (3.105)

With regard to applications, as we shall see in Chapter 4, this is a fairly small value of 

β, so it will pay to be careful of degeneracy when using the log-Poisson model with 

.

The properties of the log-Poisson model may be summarized as follows:

(a) for , its positive part  is discrete with an infinite 
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number of atoms on a finite (if ) or infinite (if ) support;

(b) if , it reduces to the β-model;

(c) for , the distribution of the limit mass may or may not have moments of 

all positive orders (see Theorem 3.1b);

(d) for , the distribution of the limit mass fails to have moments of all posi-

tive orders;

(e) for , the generator may fail the non-degeneracy criterion (Theorem 3.1a);

(f) because X is Poisson, the distribution of the generator is log-infinitely divisi-

ble.

3.4.2.4  The Log-Normal Model

The second example is constructed by again taking

(3.106)

as in equation (3.92), but now X is a standard Gaussian random variable, i.e., it is 

Gaussian with zero mean and unit variance, so Y is lognormal. This model can be 

thought as having been implicit in the lognormal hypothesis of turbulent energy dissi-

pation of Kolmogorov (1962) and Obhoukov (1962). They did not, however, propose 

their hypothesis within a random cascade framework. Mandelbrot (1972) was the first 

to use a lognormal random cascade generator, also as a turbulence model, and as a log-

Levy generator, it lies in the class of “universal” cascade generators of D. Schertzer 

and S. Lovejoy (see, for example, Lovejoy and Schertzer (1987)). In none of these pre-

vious uses did it include an atom at zero.

The MKP function can be computed as follows. First we compute

. (3.107)
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, (3.108)

where  is Gaussian with zero mean and variance . Thus  is lognormal 

and has moments

. (3.109)

So we have

. (3.110)

Since  implies , we have

, (3.111)

so γ can be written in terms of σ and b as

, (3.112)

so

. (3.113)

Thus the distribution of the generator W is

 and , (3.114)

with
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and MKP function
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. (3.116)

The first two derivatives of the MKP function are given by

(3.117)

and

. (3.118)

To determine parameter values under which the conditions of Theorem 3.2 are 

satisfied, we first need to determine the critical value of moment order  (see Theo-

rem 3.1b). Since  is quadratic, it is easy to solve for its zeroes, one of which oc-

curs at  and the other at

. (3.119)

As would be expected,  increases as β and  decrease. As noted in the discussion 

following Theorem 3.2, assuming the cascade is non-degenerate, when , the 

condition  governs the satisfaction of the conditions of the theorem. From 

equation (3.119),  for

. (3.120)

When , on the other hand, the moment ratio condition is the governing con-

dition instead. For the lognormal model, the moment ratio condition (equation (3.42)) 

χb q( ) EW
q

blog q 1–( )–=

β 1–( ) q 1–( ) σ2
blog

2
----------------- q

2
q–( )+=

χb
1( )

q( ) β 1–
σ2

blog( )
2

----------------------⎝ ⎠
⎛ ⎞ 2q 1–( )+=

χb
2( )

q( ) σ2
blog=

qc

χb q( )

q 1=

qc
2 1 β–( )
σ2

blog
--------------------=

qc σ

qc 2≤

EZ∞
2q ∞<

EZ∞
2q ∞<

q
qc

2
-----< 1 β–

σ2
blog

-----------------=

qc 2>



78

reduces to

, (3.121)

which shows that it will be satisfied for

. (3.122)

We summarize the properties of the lognormal model as follows:

(a) its positive part  has a continuous density with unbounded positive 

support;

(b) because of the unbounded positive support of , the distribution of its limit 

mass  fails to have moments of all positive orders (see Theorem 3.1b); in fact,  

exists only for

; (3.123)

(c) because , for large enough ,  fails the de-

generacy criterion  (see Theorem 3.1a);

(d) when  and the cascade is non-degenerate, the range of non-negative q in 

which the scaling of the moments estimates the MKP function by Theorem 3.2 is

; (3.124)

(e) when , the range of non-negative q in which the scaling of the moments 

estimates the MKP function by Theorem 3.2 is ;

(f) because X is Gaussian, the distribution of the generator is log-infinitely divisi-

ble;
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(g) its MKP function has a constant second derivative; and

(h) it has only one parameter  in addition to β.

As we will see in the two remaining subsections, writing generators with atoms at 

zero as the composition of independent generators , where B is a β-model 

generator and Y is a positive generator, as we have been doing, also suggests simple 

ways of defining notions of approximations and homogeneity for sequences of data.

3.4.3  A Notion of a kth-order Approximation to an MKP function

As we saw in Section 3.3, the exact MKP function cannot be obtained from finite 

resolution data even when Theorem 3.2 is applicable. Because of this, we define here a 

notion of a kth-order approximation to the actual MKP function, which will be used 

extensively in the data analysis that follows in Chapter 4.

The basic idea behind the approximation scheme to follow is to construct succes-

sively higher order approximations , , , where each  is an 

MKP function, to the true MKP function . We will also make use of two auxilia-

ry ideas. First, because of its connections to the idea of a composition of cascades in-

troduced above, it is convenient to write the kth-order approximation  to the true 

generator W as the product of k independent component generators, i.e.,

. (3.125)

Notice that . Equation (3.125) also implies, using the definition of an 

MKP function, that

. (3.126)

Second, we will characterize the behavior of the true MKP function by its derivatives 

 evaluated at  because this corresponds to the behavior of its mean.
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Because of the constraints on a valid MKP function, , , 

and , general approximation schemes such Taylor series expansion of 

 cannot generally be applied. However, a Taylor series expansion of  about 

 truncated to first order works quite well for the first-order model, . Us-

ing this idea, we have

. (3.127)

Thus the first-order MKP function is a straight line with slope . Thus the β-

model with varying slopes dependent on the value of  is the unique choice of a 

first-order model according to the present definition since, as we have seen, the β-

model is the unique random cascade model with straight-line MKP functions. Notice 

that a first-order approximation, as we have defined it, would map data without zeroes 

to a β-model cascade and would thus introduce zeroes into the approximate form. Re-

calling that the dimension of the support of the random cascade measure is given by 

, one sees that essentially the first-order approximation is the simplest cas-

cade that preserves the support of the measure.

Consider now a second-order approximation. Using again the idea of extrapolat-

ing the behavior near , let us assume that  is a constant given by 

. This implies that  is quadratic. Assume further that

 , (3.128)

so that the second-order component  is a positive random variable and the parti-

tioning between rainy and non-rainy regions continues to be governed by the first-or-

der component . Then using the general constraint  and equation (3.126) 

gives the MKP function of  as
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, (3.129)

which implies from the definition of an MKP function that

. (3.130)

It is easy to check that this relation is satisfied by taking  to be lognormal, i.e., 

, where X is a unit Gaussian random variable. The condition  

implies that , so the second-order component has the distribution

, (3.131)

and corresponding MKP function

. (3.132)

Thus the second-order approximation  of the generator has the distribu-

tion

 and , (3.133)

and the MKP function

. (3.134)

Thus the second-order approximation is just the lognormal model discussed above.

 Following the philosophy of looking at the behavior near , the parameters 

of the models can be estimated from the derivatives at . For the first-order mod-

el we set

χb 2, q( ) χb
2( )

1( ) q
2

q–( ) q 1–( )–=

EW2
q

b
χb

2( ) 1( ) q2 q–( )
=

W2

W2 b
γ σX+

= EW2 1=

γ σ2
blog 2⁄–=

W2 b
σ2 blog 2⁄–( ) σX+

=

χb 2, q( )
σ2

blog
2

----------------- q
2

q–( ) q 1–( )–=

W 2( ) W1W2≡

P W 2( ) 0=( ) 1 b
β–

–= P W 2( ) b
β
W2 b

β σ2 blog 2⁄– σX+
= =( ) b

β–
=

χb 2( ), q( ) β 1–( ) q 1–( ) σ2
blog

2
----------------- q

2
q–( )+=

q 1=

q 1=



82

, (3.135)

and for the second-order model

(3.136)

and

. (3.137)

Notice that β estimated for a second-order approximation using equation (3.137) 

would differ from that estimated by equation (3.135) for a first-order approximation 

for the same value of .

To extend this notion of approximation beyond the second order presents difficul-

ties. For example, for the third order, one expects a third-order polynomial MKP func-

tion. However, MKP functions must be convex for all q, which third-order 

polynomials generally are not. Perhaps the proper direction for generalization is to 

keep the number of parameters at two, but to vary the exponent of the term which is 

here quadratic. This would lead to a class of generators similar to those used by S. 

Lovejoy, D. Schertzer and coworkers, so-called “universal cascades” (see, e.g., Tessi-

er et al. 1993). This class includes the lognormal model (without zeroes) as the mem-

ber with a quadratic MKP function and the β-model. The difference is that “universal 

cascades” do not in general have atoms at zero (in fact, only the β-model does). Their 

view is that regions of zero rain rate that are observed in data may be thought of in 

their modeling framework as regions where the rain rate is simply extremely small (Y. 

Tessier, personal communication). I believe that this view is incorrect on the grounds 

that such regions are not anything like the regions of zero rain rate actually observed in 
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data. In data, the regions of zero rain rate are finite-sized; in the “universal” model, re-

gions of “very small rain rate” are fractal sets, i.e., they have zero area.

3.4.4  A Notion of kth-order Generator Homogeneity

In view of the data we are about to analyze, it is useful to propose a notion of kth-

order generator homogeneity, which is closely related to the notion of kth-order ap-

proximation which was just defined. Consider the following situation. Given a data 

set, i.e., a sequence of instantaneous spatial measures taken at times , 

. We just showed that by examining the derivatives of the  function 

evaluated at  we could obtain a series of approximations to the true MKP func-

tion of the generators  of the spatial measures in the sequence of data. Writing  

in the form (3.125), the results would be particularly simple and useful if there was an 

order of approximation  beyond which (i.e., for ) the estimated generators 

 did not depend on i; i.e., the k and higher order generators were constant. We will 

call this property of a sequence of spatial measures kth-order generator homogeneity, 

and will say that any sequence having it is kth-order generator homogeneous.

We will see that second-order generator homogeneity holds in the data rather 

well. Hence we will write the sequence of generators for the data set as

, (3.138)

which shows that all the variation in the generators  arises from variation in the β-

model generator ; the positive generator Y is invariant.

Notice that kth-order generator homogeneity does not in general require kth-order 

approximate generators , it merely requires that the kth and higher 

order generators are invariant. Because of this, it does not require any specific form for 

the generators , . For example, consider , where the  are log-

Poisson. Now since in this case  varies with q,  is not in this case second-or-
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der, i.e., it is not fit perfectly by a second-order approximation  where  is 

lognormal, but it could still be second-order generator homogeneous, as long as the  

do not vary with i.
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Chapter 4

Applications of the Theory of Random Cascades to 

Spatial Rainfall

4.1  Introduction

The purpose of this chapter is to apply the theory of random cascades developed 

in Chapter 3 to sequences of spatial rainfall to test the applicability of the random cas-

cade theory to spatial rainfall. First, in Section 4.2, the rainfall data to be used in test-

ing the theory is described. Then in Section 4.3, a method used to simulate “off-grid” 

cascades used for comparison with data is discussed. In Section 4.4 the random cas-

cade theory is tested against the data, using the theory developed in Chapter 3 and the 

aforementioned simulations. Given that the theory is found to be applicable, we will 

estimate parameters and test the notion of second-order generator homogeneity in Sec-

tion 4.5. This sequence of parameter estimates then forms the database from which to 

study the dependence of the spatial pattern, captured in the parameter estimate se-

quence, against a measure of large-scale forcing of the rainfall, the large-scale average 

rain rate. This study is carried out and interpreted in Section 4.6.

4.2  Description of Data

The primary data set used to test the spatial cascade theory here is radar rain rate 

data from the Global Atmospheric Research Program Atlantic Tropical Experiment 

(GATE), phases I and II. The GATE radar data was obtained from by ships stationed 

in the tropical Atlantic off west Africa (centered at  N. latitude and  W. 8°30′ 23°30′
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longitude) in the summer of 1974, and is nominally available every fifteen minutes, al-

though there are brief gaps in the record. Phase I lasted from June 28 to July 16 and the 

radar data consists of 1713 scans; phase II lasted from July 28 to August 15 and has 

1512 scans of radar data. Such a sheer quantity of processed radar rainfall data is sel-

dom available. For these phases of the experiment, the radar data was primarily ob-

tained from one C-band (approximately 10 cm wavelength) radar stationed at the 

center of the experimental region, with another C-band radar used to fill in regions 

where the primary radar had an obstructed view.

The processing of the GATE radar data is described in detail in Patterson et al. 

(1979). A general introductory guide to radar rainfall data is given by Collier (1989). 

As with any such data set, two primary transformations are required, one to convert 

the radar returned signal (reflectivity) into rainfall rates, and the other to convert from 

the original spherical coordinates of the radar into a Cartesian coordinate system that 

is amenable to analyses such as are performed here. The reflectivity-rain rate conver-

sion is performed using a “Z-R relationship”, in this case,

, (4.1)

where R is rainfall rate in  and  is the “equivalent reflectivity factor” in 

units of . The equivalent reflectivity factor is defined as “the summation per 

unit volume of the sixth power of the diameter of spherical water drops in the Rayleigh 

scattering region which would back scatter the same power as the measured reflectivi-

ty” (Collier 1989, p. 25), which explains the units as diameter in mm to the sixth power 

divided by volume in . The Rayleigh scattering region obtains when the radar 

wavelength is much larger than the rain drop diameter, e.g., for diameters smaller than 

3.2 mm for C-band radars (Collier 1989, p. 25). The conversion to Cartesian coordi-

nates is performed using the interpolation scheme described in Patterson et al. (1979) 
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and results in a circular array of square pixels with a side length of 4 km. The diameter 

of the circular array is 100 pixels. Beyond the two primary transformations, correc-

tions for a variety of sources of attenuation were performed.

In order to provide some preliminary sense of the applicability of the results ob-

tained by testing the cascade theory on the GATE radar data to continental convective 

rainfall, we also make use of some radar data from a C-band radar located at Elbow, 

Saskatchewan, between Saskatoon and Regina. This radar is operated by the Atmo-

spheric Environment Service (AES) of Canada and the data was kindly provided by R. 

L. Lawford of the AES. This data was converted by the AES into a square array 120 

pixels on a side, each pixel being square with a side length of 2 km. The Z-R relation-

ship used for this data was

, (4.2)

which corresponds to

, (4.3)

in the same units as equation (4.1) above.

4.3  A Method for Constructing Homogeneous and Isotropic Cascades

Three kinds of difficulties are discussed in Section 3.4 that arise from the discrete-

ness in space and scale of the method of constructing the random cascades for which 

the theory is presented in Chapter 3. One of them, the arbitrariness of the branching 

number, can be overcome by the use of log-infinitely divisible generators. The effects 

of having “off-grid” data to compare to an “on-grid” theory can be partially accounted 

for by the use of simulations of discrete random cascades, as will be discussed below. 

However, as will also be noted, this method is not completely satisfactory and such 
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cascades remain nonhomogeneous and anisotropic. To remove these properties, cas-

cades must be constructed using a homogeneous and isotropic method of spatial subdi-

vision. The main purpose of this section is to present such a method and discuss the 

simulation of cascades via the method. Cascades simulated by this method will often 

constitute “the theory” in the subsequent sections in which the random cascade theory 

is compared with spatial rainfall data.

The essence of “off-grid” data, even if it came from a standard discrete cascade, is 

that the sampling method included no knowledge of the location and orientation of the 

boxes used to subdivide space when constructing the cascade. The effect of lack of 

knowledge of the location of the boxes is easy to test using computer simulations as 

follows.

(a) Simulate a standard discrete random cascade down to a relatively high resolu-

tion using some branching number  (the subscript d signifies “down”.) For exam-

ple, take  in two dimensions and simulate down to  levels, giving a 

cascade of  pixels on a side.

(b) Select randomly a square subset of the cascade of size . Thus for the 

example above, one would randomly locate a square subset 512 pixels on a side.

(c) Select an “on-grid” square subset also of size . For , this would 

mean choosing one of the four quadrants of the cascade at level .

(d) Compare the  function (or any other quantity of interest) obtained from 

the subset selected in step (b) with that obtained from the subset selected in step (c).

A selection of the “on-grid’ and “off-grid” subsets is illustrated for  and 

 in Figure 4.1.

A variant of this approach uses a randomly located square subset of a size corre-

sponding to an integer multiple of a different branching number  (the subscript u 
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signifies “up”). For the example in step (a) above, one could take  and select a 

random subset 729 pixels on a side, and average over the boxes six times, since 

. Then comparison of the scaling properties requires an adjustment for the 

effect of changing the branching number, which presumes the use of a log-infinitely 

divisible generator.

The effect of random orientation of boxes obviously cannot be simulated by such 

a method. However, this is not a great concern because next we present a method of 

simulating homogeneous and isotropic cascades, which by definition lack preferred lo-

cations or orientations.

The homogeneous and isotropic cascade simulation method we present may be 

thought of as a discrete form of the lognormal cascade simulation method used by 

Mandelbrot (1972), which is presented more clearly in Mandelbrot (1983, pp. 379-

380). In this method, one generates a cascade by multiplication of lognormal random 

fields, i.e., the martingale sequence  (see equation (3.15)) is composed of the 

Figure 4.1  Schematic of “on-grid” versus “off-grid” cascades
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cascade

“off-grid”
cascade
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product of random factors , where , , and 

 is a homogeneous Gaussian random field, with mean one and some variance . 

To completely specify the random field requires additionally the spatial structure of 

the variance. This can be specified by assuming isotropy and a correlation length. It is 

the correlation length alone that varies with scale, as can be seen to be appropriate by 

considering the random field  that one obtains from a discrete random cascade at 

level n. In this case, the value of the random field is different in every box, so it has a 

correlation length on the order of the box size,  in two dimensions. So Mandel-

brot assigns an exponential decay of correlation with characteristic length , i.e., 

the covariance is taken to be . It should be noted that Kahane (1985) has 

analyzed this construction and verified that certain results conjectured by Mandelbrot 

(such as the Hausdorff dimension of support of the measure and the degeneracy crite-

rion) carry over from the discrete case to this one, showing that certain basic aspects of 

the theory of such cascades are the same as that of discrete cascades.

One could imagine generalizations of this method by taking  to be other 

kinds of finite variance random fields, such marginally gamma-distributed, or infinite 

variance fields. As noted in Chapter 3, the “universal generators” employed by D. 

Schertzer and S. Lovejoy employ a whole family of such random fields, which are 

constructed from (extremal) log-Levy stable distributions, of which the Gaussian dis-

tribution is the only finite variance case.

Here we generalize Mandelbrot’s construction in a direction which is determined 

by the properties of rainfall fields. In Chapter 3, the zeroes of rainfall fields are incor-

porated into discrete random cascades by allowing the generators to have an atom at 

zero. To incorporate this effect into the present context where we are specifying the 

whole field  at once, we assume that the marginal distribution of  also has 

an atom at zero that results from regions that are zero, and that the marginal distribu-
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tion need not be supported on a connected set (take, for example, the marginal distri-

bution of  to be the β-model). The latter fact precludes  being a continuous 

function, and the existence of regions that are zero suggests that the appropriate way to 

construct  is to perform a discrete but nevertheless homogeneous and isotropic 

subdivision of space and assign iid realizations of a random cascade generator to each 

subdivision. In order to maintain the increasing variability of  as n increases, the 

spatial subdivision must have a decreasing characteristic length  (in two di-

mensions).

A classic way of subdividing the plane homogeneously and isotropically into dis-

crete regions of some characteristic size is through the use of Voronoi tessellations 

“generated” by a homogeneous and isotropic point process. If we designate the set of 

points in some bounded region J of the plane arising from such a point process by

, (4.4)

where the locations of the points, ,  are distinct and , 

then the Voronoi tessellation induced by P is the set of polygons

(4.5)

where

(4.6)

(Okabe et al. 1992, p. 67). In other words, the polygons  consist of the points in 

the plane that are closest to . An example is shown in Figure 4.2. Notice that there 

are points in the plane that are equidistant from two or more generator points in P. 

These constitute the boundaries or edges of the polygons and are included in two or 

more polygons. Also notice that some of the polygons will have infinite area, since we 
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are subdividing the whole plane, and that the polygons are convex sets.

The point process from which the points P that generate the polygons are obtained 

must be homogeneous and isotropic so that the tessellation it generates and the random 

fields  are also homogeneous and isotropic. We will consider two examples with 

these properties, the binomial point process and the Poisson point process.

The binomial point process can be thought of as the process by which a fixed 

number, say m, of points are located independently with the uniform distribution over 

some bounded subset J of the plane (Okabe et al. 1992, pp. 56-57). Just as on some in-

terval  the density of the uniform distribution is given by

, (4.7)

the uniform distribution on J has the density

, (4.8)
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Figure 4.2  The Voronoi polygon of a point
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where  denotes the area of the set J. The binomial point process is so-called be-

cause it has the property that the number of points in a subset S of J, denoted , has 

the binomial distribution with m trials and success rate . The intensity of 

a point process, which we designate by ν, is defined as the expected number of points 

per unit area, so over some  we have . The problem with the bino-

mial point process is that it does not extend homogeneously to regions outside J. Con-

sider a region T disjoint from J such that . In order to have a homogeneous 

process, the intensities  in T and  in J must be equal. But since  

and , where  and  are positive integers,  requires

. (4.9)

But since  and  are not necessarily integers, it is not in general possible to satis-

fy equation (4.9) nor .

The Poisson point process resolves the above difficulty by making the number of 

points in J no longer fixed at m but random, with a Poisson distribution with parameter 

m. Then the intensity ν is given by , and in any subset S of J the number of 

points  has a Poisson distribution with parameter . Notice that unlike in 

the binomial point process, in an arbitrary region T disjoint from J we can have the 

same intensity, by taking the number of points to be selected from the Poisson distri-

bution with parameter

. (4.10)

Because of this property, we will use the Poisson point process to generate Voronoi 

tessellations of the portions of the plane on which the homogeneous and isotropic cas-

cades are simulated. Notice we can define the characteristic length of the polygons 

generated by a point process of intensity ν as , since  is the expected 
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area of each polygon.

Thus the basic construction of homogeneous and isotropic random cascades to be 

employed here is as follows:

(a) Define a region J of the plane on which to construct the cascade; we will usu-

ally use a square region of side length , say, .

(b) Choose some branching number  (not necessarily an integer).

(c) At each level n, simulate points from a Poisson point process with intensity 

 such that the characteristic size of the polygons generated by the points will 

be . Do this sufficiently far beyond the boundary of J (say, a few character-

istic lengths) such that edge effects (e.g., the infinite polygons in Figure 4.2) do not af-

fect the region inside J.

(d) Construct the Voronoi polygons associated with the points of the Poisson 

point process.

(e) Construct the random field  on J by assigning an iid realization of a cas-

cade generator W (with a log-infinitely divisible generator) to each polygon.

(f) Construct the martingale sequence .

The construction outlined above satisfies the requirements we have stated, but the 

discreteness of the random fields  introduces an unforeseen difficulty. Because 

the subdivision of space at each level is independent of that at the other levels, the 

product of the , , has a very fragmented set where . The prob-

lem with the set where  is that the overlap of independent polygons from 

different scales leads to lots of regions where  that have length scales much 

smaller than .

In view of this, the construction outlined above was modified to prevent this prob-

lem by tessellating the plane in the standard manner at the first level only, followed by 
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“sub-tessellations” at subsequent levels. A sub-tessellation takes each polygon in a tes-

sellation, simulates a (modified) Poisson point process over it, and subdivides the 

polygon into “sub-polygons” essentially by a Voronoi tessellation of the region inside 

the polygon. An example of the sub-tessellation of a polygon is shown in Figure 4.3. 

The sub-tessellation is generated by a modified Poisson point process because the 

number of points inside the polygon tells how many sub-polygons into which to divide 

it. Thus one point means no subdivision and zero points has no meaning. Thus the 

number of points must come from a distribution that excludes zero. This is accom-

plished by taking the number of points to be , where M is a Poisson random 

variable with parameter

, (4.11)

where  is the area of the polygon S. Notice that to sub-tessellate the original square 

 would destroy the isotropy of the cascade, since the boundaries of J 

have fixed orientations.
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Figure 4.3  The sub-tessellation of a Voronoi polygon into sub-polygons



96

4.4  Tests of the Random Cascade Theory

4.4.1  Tests of the Theory Using the Scaling of Marginal Moments

We first test the scaling of the marginal moments of the spatial rainfall field. As 

described in Section 3.3 (see equation (3.46)), the random cascade theory predicts that 

the moments of the field versus the length scale of the boxes over which it is integrated 

will be log-log linear. In order to provide a quantitative measure of the “goodness” of 

the log-log linear fit, a measure of the error of the weighted linear regression fit is 

computed and compared to the same quantity computed from off-grid simulations. A 

more informative test is provided by comparing the intercepts of the log-moment ver-

sus log-scale relationship obtained from data versus those obtained from simulations. 

This test is more informative than the linearity test because the direction of the devia-

tion from the theoretical result gives information about the scaling of the data.

Because our primary data set is that from the GATE experiment, for which the 

largest  by  set of pixels is 64 by 64, we use 64 by 64-pixel (actually, a 64 by 64-

pixel grid laid over a homogeneous and isotropic cascade simulated by the means de-

scribed in the previous section) β-model simulations for comparison purposes, of 

which 400 were simulated with β values,

, , (4.12)

so the β values are evenly spaced between 0.00125 and 0.99875. A β-model generator 

was used in order to avoid questions of generator type and parameter values. In any 

case, the quantities used in this section that were obtained from simulations were 

found to be relatively insensitive to the distribution of the positive part of the genera-

tor.

The linear regression of the log of the moments versus the log of the scale is per-

formed by the method of least squares. A weight function

2
n

2
n

βi 0.0025i 0.00125+= i 0 … 399, ,=
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(4.13)

was applied in order to cause the small-scale values to determine the line. It is given 

this form because the number of boxes grows in that way. The optimal method for de-

termining the weight function is not available because the variance of the slope of the 

regression as a function of the weighting scheme is not known.

The first test we apply concerns the “goodness” of the fit of the linear regression 

to the data. This is measured by a quantity we will call the “standard error” . It is 

a function of the moment order q, and is defined as follows:

, (4.14)

where n is the cascade level,  is the weighted least squares fit to , 

 is the qth moment of the rainfall data at level n,  is the weighting function 

defined above, and  is the maximum level in the data (here 

).

In Figures 4.4 and 4.5 the standard error  for  and , respective-

ly, are plotted against the estimate of  (the regression slope) for the β-model simu-

lations and the data from GATE phases I and II. The simulations and GATE data show 

similar behavior for ; for , the standard error is small (on the order of 

one or smaller), while for , much larger values are sometimes (often in the 

case of the simulations) obtained. This trend in error as a function of  is to be ex-

pected, since  corresponds to a scene completely full of rain, while  

indicates only a single pixel with rain at each scale. It is curious however that the sim-

ulations tend to have larger standard errors in the small τ range. Note that  treats 

each box with mass the same, effectively giving them all unit mass, so the  

analysis is an analysis of the rainy versus non-rainy area. Because of this, one issue 
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that will need to be kept in mind when  is the effect of data processing on the 

rainfall field, because of the classic difficulty of distinguishing small rain rates from 

zero. We will spend considerable time in this chapter with further analyses of the 

 scaling. So for now, as a preliminary conclusion, we may evidently take it that 

the standard error analysis for  provides no strong evidence that the hypothesis 

that the rainfall field is a random cascade needs to be rejected.

When , the GATE rainfall fields tend to have somewhat larger standard er-

rors than the simulations, especially in the region around  where most of 

the GATE rainfall scans cluster, though not by a large amount. Since taking  

emphasizes the larger values of the measure, it might be thought that the choice of the 

positive part of the cascade generator might affect the standard error for , but 

examination of standard errors from other simulations indicates that the differences 

are very slight.

The second test concerns the intercepts of the log-log linear fits. As shown in Sec-

tion 3.3 (equation (3.47)), the intercepts  are given by

. (4.15)

It is useful to think of the intercepts as providing a realization of , but since 

 depends on b and hence can’t really be estimated, we keep  and 

 together and re-write equation (4.15) as

, (4.16)

where the initial mass term  is estimated by

(4.17)

(from equation (3.48)).
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Figure 4.4  Standard error of scaling of moments of spatial rainfall, q=0
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Figure 4.5  Standard error of scaling of moments of spatial rainfall, q=2
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To provide some idea of what is going on with the  term, one can assume 

a value of b and a generator and compute the quantity . For , 

, for which a formula is given in Chapter 3 (equation (3.83)). From 

Appendix C, . Since  is used in the data analysis 

and the simulations are for the β-model, we made those assumptions on branching 

number and generator and produced Figure 4.6. We will comment on the results given 

in Figure 4.6 as the need arises.

Before proceeding to the data analysis, we make one more adjustment to equation 

(4.16). The data we use is actually rain rates averaged over boxes of size , i.e., we 

have . So if the sum  is written is terms of rain rates, 

we obtain

, (4.18)

which introduces an additional term  into the intercept of log-log plots, in 

which case equation (4.16) becomes

,

, (4.19)

since . The notation  is introduced to denote intercepts ob-

tained when using rain rates as the data. The quantity  is given 

the shorthand  because these can be thought of as “normalized” intercepts. No-

tice that when the data is rain rates, we have

. (4.20)
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This fact will be useful in interpreting the results.

Figures 4.7 and 4.8 contain the same set of plots as Figures 4.4 and 4.5, but for the 

normalized intercepts  instead of slopes. Consider the simulation results first. 

These confirm the conjecture made in Section 3.3 that  would be centered 

around zero. This is seen most clearly near the values for the rain-filled scene, 

 and . Notice from Figure 4.6 that  is likely quite small in 

Figure 4.6  Logarithm of moments of limit mass for the beta model, b=4
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this region. For , moving away from , there appears to be a weak up-

ward trend as a function of τ. The plots from the data have similar but stronger trends, 

and do not appear to have  for the rain-filled scenes as the simulations 

do. In fact, for , the  asymptote appears to be negative, and the inter-

cepts grow as τ decreases, passing through zero in the neighborhood of . 

On the other hand, for , the  asymptote is positive for the data, and 

the  estimate decreases as τ increases, passing through zero in the neighbor-

hood of .

We will use the schematics in Figure 4.9 to help interpret these results. As can be 

seen there, failure for the fitted log-log linear curves to pass through or near the point 

 signals imperfect scaling of the moments. Because of the 

weighting of the regression, the standard error is quite sensitive to the scaling of the 

moments at smaller scales, but not at the larger scales. Thus the intercepts are impor-

tant in measuring whether the scaling that is obtained at the smaller scales holds 

through to the larger scales. This sort of information is very important, because if ran-

dom cascades or some other scale-invariant theory is to apply to rainfall in any mean-

ingful or useful sense, it needs to apply over a range of scales. The most reasonable 

default hypothesis is that a significantly non-zero intercept indicates a failure of scal-

ing, unless another explanation can be found.

But the deviations of the simulations from perfect scaling, defined by the zero 

normalized intercept criterion, while not as great as those in the data, suggest that there 

are indeed other at least partial explanations of this behavior. First, as already de-

scribed, the theory actually indicates that the intercepts will on average deviate from 

zero by the amount of the  term, which we have neglected. Figure 4.6 pro-

vides an estimate of the size of this term. In the case of , this term is negative 

but small for all but the smallest values of τ. The trend in the intercepts of the data is 
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Figure 4.7  Intercepts of moments of spatial rainfall, q=0
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Figure 4.8  Intercepts of moments of spatial rainfall, q=2
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positive to the left, so the direction of the theoretical effect is opposite to that observed 

in the data. The  case is similar: while here the  term is somewhat larg-

er, the direction of its effect is again wrong.
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The other way in which we expect the data to be different from the theory, even if 

it had come from a scale-invariant random cascade, is that the data is, as discussed in 

Section 4.3, “off-grid” (as are the simulations), while the theory is “on-grid”. Let us 

see if we can develop some intuition regarding the effect of this difference. When 

, throwing down a data analysis grid randomly on a random cascade measure 

with zeroes in it will cause a lot of the non-zero regions to straddle boxes in the data 

analysis grid, with the effect that the number of boxes with mass at each scale will be 

anomalously large. This will have the effect of shifting each data point up. However, 

at the larger scales, the number of boxes is small and there is only so much room to 

shift upward. Thus it is reasonable to expect concavity to arise in the scaling of the 

moments from this source. This situation of course obtains for the simulations as well 

as the data and probably explains the increase in  observed in Figure 4.7a as you 

move away from .

The  case is basically opposite. Taking  emphasizes the larger values 

of the mass; these occur when some box at some scale in the generation process re-

ceives an unusually large value of the multiplier, but such a box will be split up and 

spread across two or more adjacent boxes when a random grid is applied. This will re-

sult in shifting the moments down from their theoretical “on-grid” locations. Again at 

the larger scales, the shifting is less likely to occur, in this case, because the large box-

es are less likely to cross the large values of the mass, and again the moment of the 

mass in the largest box is independent of the gridding. Thus we expect convexity in the 

scaling of the moments, as perhaps occurs weakly for the simulations in Figure 4.8a.

The effect in the  case is generally weaker than in the  case, because 

in the  case, any amount of mass that appears in a box has the same effect as a 

lot of mass. The  case would be more strongly affected by the gridding in the 

case of a very large q.
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So we have examined two sources of deviations from perfect scaling of the mo-

ments that would appear in realizations of a random cascade, and found that while one 

of them seems to appear in the simulations, and by extension in the data, the deviations 

in the data are much larger than those in the simulations, and hence require some addi-

tional explanation. At this point, it seems unlikely that there is any explanation other 

than nonhomogeneity of scaling. Let’s observe what the results are saying about the 

nature of this nonhomogeneity by comparing the results in Figures 4.7 and 4.8 with the 

schematics in Figure 4.9.

For , the intercepts in the data are positive for the moderate to small values 

of τ. This indicates the concave curve in Figure 4.9a. In addition to the effect of grid-

ding discussed above, there appears then to be a tendency for the rainfall pattern to de-

viate from what would be observed in a random cascade in the sense that relative to 

what occurs at smaller scales, too many boxes at larger scales have mass. This means 

that the regions with mass are too uniformly distributed in space, or, equivalently, 

there are not enough holes at larger scales.

For the values of τ at which most of the GATE scans cluster, the deviations from 

the behavior of the simulations are fairly minor, a helpful fact for modeling GATE-

like rain with random cascades. But as mentioned before, for the largest values of τ, 

the intercepts become negative, which indicates the convex curve in Figure 4.9a. This 

means that there are too many large regions without mass at the larger scales; the large 

value of τ indicates that at smaller scales there are few regions without mass - the rainy 

regions are almost without holes.

For , these same scans of rainfall have the smallest (most negative) values 

of τ and positive intercepts, indicating they have scaling curves like the concave one in 

Figure 4.9b. This behavior is consistent with that observed in these scans for , 

as may be seen by considering the change in moment as scale is decreased. It decreas-

q 0=
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es more slowly at large scales than at small, which means that at large scales all the in-

tense rainfall tends to be concentrated in a few regions, while at smaller scales, it is 

more uniformly distributed. This picture is thus consistent with that at the  

where, for these scans, we saw that the large scale had a lot of empty regions relative 

to an iid random cascade, while the small scale did not. Hence at the large scales, the 

rainy area is relatively small, but where it is rainy, the rain rate is large. At small 

scales, the situation is reversed - the rainy area is relatively large and the rain rate is 

relatively small. Of course, “relative” here means in relation to what would be ob-

tained from a scale-homogeneous multiplicative cascade with the same values of τ.

Again, as in the  case, as the value of τ moves away from its maximum 

magnitude, the data intercepts pass through a region where they are not so anomalous, 

near where most of the GATE scans are clustered. At smaller magnitudes of τ, the in-

tercepts are negative, which indicates the convex scaling curve in Figure 4.9b. This 

means the rainfall is more uniformly distributed at larger scales than it is at smaller 

scales, relative to a cascade. Again this is consistent with what was found for .

So a consistent picture emerges from this analysis of the intercepts and their im-

plications for the scaling of the moments. Relative to what would be observed from a 

random cascade, GATE scenes with a lot of rain are over-clustered (too non-uniform) 

at large scales and under-clustered (too uniform) at small scales, while scenes with lit-

tle rain are too uniform at large scales and too non-uniform at small scales. This is not 

to say that the homogeneous scaling assumption is not a useful one in characterizing 

these scenes - as noted above, the deviations where the majority of the scenes are clus-

tered are not large - but anything the data analysis can tell us about the extent and na-

ture of the deviations of data from a theory is that much more information available for 

an improved or new theory.

Before examining other tests of the data, let us use Figure 4.9 to briefly describe 
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what implications a failure in scaling would have for modeling using random cas-

cades. Consider the concave curve through the data in Figure 4.9a. As noted, this is the 

typical situation for data for  for all but the largest values of . For , 

the moments simply count the number of pixels at each scale that contain rainfall. The 

slope of the line between the data points at each scale indicates the rate at which this 

number decreases as scale increases. If this “rate” - quantitatively, the ratio between 

the number at each scale - is constant, perfect scaling is obtained. If it has a trend - for 

example, the concave curve indicates a decreasing rate - the scaling is nonhomoge-

neous. That is, it appears that the process moves from scale to scale differently at dif-

ferent scales. We will not prove this assertion, but it should be reasonably clear 

intuitively that such a situation could be modeled as a random cascade with generators 

whose distributions depend on scale. In the case of the concave curve in Figure 4.9a, 

these generators would have a variance that increases as scale decreases. We will not 

discuss such nonhomogeneous cascades further; our present purpose is to further ex-

plore the applicability of homogeneous cascade theory to rainfall.

4.4.2  Tests of the Theory Using Cross Moments

The second set of tests is developed from the scaling of the spatial average cross 

moments, that is, the dependence of quantities of the form

, (4.21)

on , , where  is a distance along on axis of a two-di-

mensional cascade. As shown in Section 3.3, the corresponding ensemble average 

quantity has the scaling
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, (4.22)

where the scaling exponent is

. (4.23)

The conjecture is made in Section 3.3 that the spatial average cross moment has the 

same scaling as the ensemble average cross moment, i.e.,

. (4.24)

A side effect of the present discussion will be testing this conjecture using simulated 

cascades.

The cross moment scaling can be used to make a consistency check because the 

exponent  can be written in terms of the MKP function or the  function 

of the generator as follows:

(4.25)

(4.26)

(see Section 3.3). To perform the test,  is estimated from the scaling of the 

spatial average cross moments (equation (4.24)) and  from the scaling of spatial 

average marginal moments (equation (3.45)); then the equality (4.26) can tested.

Tests of equation (4.26) for three choices of moment order for the β-model simu-

lations and GATE phases I and II are given in Figures 4.10 through 4.15. The first set 

of three figures contains the scaling exponents of the cross moments in the East-West 

direction for the GATE data, and the second set of three contains the scaling exponents 
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in the North-South direction. Consider first the case where  (Figures 4.10 

and 4.13). In this case, the cross moment exponents from simulations and data in both 

directions lie above the value computed from the scaling of the marginal moments ac-

cording to equation (4.26), but the East-West direction is higher. Since for other mo-

ment orders, the cross moment exponents from simulations lie fairly well centered on 

the value predicted by equation (4.26), it is reasonable to assume that this is not evi-

dence of the failure of the conjecture that equation (4.26) holds, but instead an effect 

of the off-grid nature of the simulations. Apparently the effect of the failure to match 

the generation and analysis grids has somewhat different effects for the marginal and 

cross moments for , making the cross moment exponents smaller in mag-

nitude (hence indicating larger correlation) than what would be expected from the 

scaling of the marginal moments.

However, the cross moment exponents computed from the data have generally 

larger deviations from the predicted value than do the simulations, hence giving fur-

ther evidence of disagreement with the random cascade theory. The size and sign of 

this deviation as a function of the moment order and direction of the cross moment ex-

ponent is quite interesting. For  (Figures 4.10 and 4.13), the cross moment 

exponents for both directions lie generally above the predicted value, but the East-

West cross moment exponent is clearly higher. This indicates that the occurrence of 

rainy areas is more correlated in the East-West direction than in the North-South direc-

tion (and anomalously so compared to the scaling of its marginal moments). This is 

suggested visually in the data where the rainy areas are elongated in the East-West di-

rection. As we go to  (Figures 4.11 and 4.14), the cross moments expo-

nents for both directions fall relative to the predicted value; in the East-West direction 

they lie quite nicely on top of the predicted value, while the North-South direction ex-

ponents have fallen below the predicted line. For  (Figures 4.12 and 4.15), 
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this relative descent continues, although it is somewhat masked by the stretching of the 

y-axis, and again the North-South exponents are lower. This same result also holds for 

, which we do not show here. So we may draw the general conclusion that 

the GATE rainfall fields are more correlated in the East-West than the North-South di-

rection; we came to this same conclusion via a somewhat different computation sever-

al years ago (Over and Gupta 1991).

This conclusion can be confirmed by examining the normalized cross moments at 

the smallest scale available in data (  km). These are given by equation (4.21) 

for  and  and are presented for  and  in Fig-

ures 4.16 through 4.19. In these plots, the choice of the function to plot along the x-

axis is somewhat arbitrary, and the solid diagonal line is not to be taken as a theoretical 

prediction; it is merely included to help the eye compare the plots. In these plots it is 

shown directly that the East-West correlation is greater than the North-South correla-

tion (at this scale) for both  and .

A second reason for including these cross moment plots is to test the visual im-

pression that real rainfall fields are “smooth”, meaning that within the rainy region, the 

rain rate changes more or less smoothly from low intensity regions (generally near the 

edges of the rainy region) to high intensity regions, generally near the center. In partic-

ular, they appear to be smoother in this sense than cascade simulations, which have a 

more “salt-and-peppery” appearance. One might expect that a cross moment analysis 

would quantitatively measure this difference, with the data being more correlated than 

simulations. However, the differences between data and simulations in Figures 4.16 

through 4.19 are slight. Thus quantifying the visual impression of “smoothness” re-

mains an open problem.

Returning to the discussion of the cross moment exponents in Figures 4.10 

through 4.15, we can summarize and interpret the differences from the theoretical re-
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Figure 4.10  E-W cross moment exponent vs. τ(q) cross moment exponent
p=q=0
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Figure 4.11  E-W cross moment exponent vs. τ(q) cross moment exponent
p=q=0.5
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Figure 4.12  E-W cross moment exponent vs. τ(q) cross moment exponent
p=q=1
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Figure 4.13  N-S cross moment exponent vs. τ(q) cross moment exponent
p=q=0
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Figure 4.14  N-S cross moment exponent vs. τ(q) cross moment exponent
p=q=0.5



119

Figure 4.15  N-S cross moment exponent vs. τ(q) cross moment exponent
p=q=1
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Figure 4.16  E-W cross moment, p=q=0
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Figure 4.17  E-W cross moment, p=q=1
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Figure 4.18  N-S cross moment, p=q=0



123

Figure 4.19  N-S cross moment, p=q=1
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sults as a function of moment order as follows. For , the cross moment ex-

ponent indicates longer correlation length than the scaling of the marginal moments 

would indicate, while for , the correlation length is shorter. Together these 

indicate that the GATE rainfall fields differ from the cascade theory in the direction of 

the traditional picture of the structure of a tropical convective rainfall field, where a 

few small, high intensity convective cells are imbedded in a large, low intensity region 

generated by the mesoscale anvil. As discussed above, both the low and high-intensity 

structures are elongated in the East-West direction.

While the differences from the theory indicated by the intercepts are different, 

they are compatible with these results. Recall that for scenes with a lot of rain, the in-

tercepts indicated that the rainfall fields at coarse resolution are over-clustered for 

large scales relative to the small scales, with the opposite holding for scenes with little 

rain. These results can be interpreted in the convective cell / mesoscale anvil frame-

work as saying that in scenes with a lot of rain, the rainy region consists of one or a 

few mesoscale anvil regions containing spatially correlated convective cells, while 

when there is little rain, it consists of scattered cells. The interpretation of the cross 

moments above matches this for scenes with a lot of rain. For scenes with little rain, 

the results seem opposite, but in examining the  results further (Figures 

4.12 and 4.15), one sees that the data in the left-hand tail does not fall below the theo-

retical line as much as the simulations do, indicating that indeed for scenes with little 

rain, the correlation length is anomalously large, matching the results from the inter-

cepts.

We will see below that the further results of the scaling analysis point toward tra-

ditional ideas about the spatial structure of rainfall fields.
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4.5  Parameter Estimation

The tests of the random cascade theory presented above show that from a standard 

error perspective, the scaling properties of GATE rainfall fields may be considered 

cascade-like. While the other tests indicate important differences from the theory in 

the details of the rainfall field structure, the scaling results suggest an approximate 

compatibility between the theory and the data. So we proceed to parameter estimation. 

As discussed in Section 3.3, the slope of the log-moment versus log-scale relationship 

as a function of moment order q gives an estimate of the  function, which in turn 

provides an estimate of the MKP function of the cascade generator under certain con-

ditions given in Theorem 3.2. Estimating the parameters of the cascade generator by 

this method gives a very interesting result, as we shall see. Some results from this type 

of analysis were published in Over and Gupta (1994). Here, however, we use some-

what different notation and perform some additional tests.

The basic result on this topic in Over and Gupta (1994) was that the estimated 

 functions of the GATE and Elbow data were approximately straight lines, partic-

ularly for the low rain rate scenes, implying that the appropriate generator for model-

ing these scenes is the β-model, which is defined in Section 3.4 as

 and . (4.27)

(In Over and Gupta (1994) the β-model was parameterized as

 and .) (4.28)

That β-model generators have straight-line  functions is demonstrated in Section 

3.4, where it is shown that the  function has slope , implying, for , 

that the  function has slope . The β-model is the simplest non-trivial cas-

cade generator that includes an atom at zero. Notice that for a cascade with this gener-
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ator, wherever there is mass, it has the same distribution

. (4.29)

Notice that if it were it not for the  factor, each positive mass would be identical.

The “straightness” of  is measured in Over and Gupta (1994) by comparing 

the value of p computed from  with that computed from an estimate of the slope of 

. This slope estimate is such that if the  function were a straight line, the two 

estimates of p would coincide. Hence their differences measure the deviation of the 

 function from being a straight line. However, these estimates of p are somewhat 

problematical. The estimate of p from  is problematical for the following reason. 

It is observed that the empirical  functions are often concave in the neighborhood 

of . This is an anomaly because MKP functions must be convex. Because 

 is always zero, this casts some doubt on the value of . Hence one would like 

to understand the origin of this anomaly before proceeding to estimate p or β from 

. The estimate of p from the slope of the  function is also problematical be-

cause to estimate the slope of the  function it uses not only  but also the  

function where q is as large as four, and one doubts that these are very accurate, due to 

the use of a high moment order vis-a-vis a relatively small scene of data.

So two preliminary tasks confront us before proceeding to estimate and use the β-

model parameter: (1) to explain the concavity of the  function in the neighborhood 

of , particularly with regard to the accuracy of the value of , and (2) to 

determine the best method to estimate the β-model parameter and the parameters of 

random cascade generators in general.

The former task has a more limited scope, so we will begin with it. It was conjec-

tured in Over and Gupta (1994) without the benefit of off-grid simulations that both 

the anomalous intercept behavior that we examined in the previous section and the 
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concavity of the  function near  had a common origin in the off-grid na-

ture of the data. Here using off-grid simulations, we did observe in the simulation re-

sults (see, for example, Figures 4.10 and 4.13) in the previous section that the results 

for  were particularly affected by the off-grid versus on-grid problem, but this 

effect was not sufficient to explain the behavior of the data. So another explanation 

must be found.

Let us first demonstrate the problem and consider this aspect of the β-model sim-

ulations specifically. We use the following approach. The local slope of the  func-

tion at  may be obtained by estimating  by the method described in 

Section 3.3 (equation (3.50)). Using this slope a value for  may be computed by 

linear extrapolation. If the estimate of  found using  lies above that derived 

via the scaling of moments, there is evidence of anomalous concavity in the region 

. Applying this procedure to the β-model simulations will also show if the ef-

fects of being off-grid (as generated by this type of simulation) can explain some or all 

of the concavity. The results are given in Figure 4.20 below. For β-model simulations, 

this figure shows that for the larger values of , that is, the smaller values of β, the 

 and direct methods of estimating  give quite similar results and show no 

evidence of concavity. For the smaller values of , some evidence of convexity is 

apparent in the simulations. In the data, however, for the larger values of , the es-

timate of  found using  clearly lies generally above that derived from the 

scaling of the moments, and this difference is evident for all  greater than about 

0.6.

So just as in the previous section where we saw that the effect of generating simu-

lations off-grid did not reproduce the moment scaling intercept behavior observed in 

the data, here we see that it does not explain the concavity of the  functions esti-

mated from data. An alternative hypothesis can be developed as follows. The value of 
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Figure 4.20  Estimate of τ(0) from τ(1)(0) vs. estimate from scaling of moments
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 computed from the scaling of the moments, due to the weighting of the regres-

sion, is largely determined by the ratio of the two smallest-scale values, the number of 

boxes with rain at the smallest scale, and the number of boxes with rain at the next-to-

smallest scale. Since the value of  is anomalously low, this ratio must also be 

anomalously low, which implies that the number of boxes with mass does not decrease 

as box size increases as fast as would be expected. The beginning of the answer lies in 

asking why the number of boxes with mass decrease as box size increases. It decreases 

because we average over regions containing more than one box that has mass. So the 

anomaly must arise because an unusually small number of the boxes at the smallest 

scale lie in common boxes at the next smallest scale. One might think this effect could 

be reproduced by off-grid simulations, but for those produced by Voronoi tessellation 

subdivisions of space, we have given evidence that this effect is practically nil. The 

second alternative one might consider is that the rainy boxes at the smallest scale tend 

to be isolated, but we saw in the intercept analysis that this is true only for the smaller 

values of . The issue thus seems to be one of shape: the Voronoi tessellation 

scheme gives convex polygons at each subdivision, keeping the rainy areas compact. 

While we observed above in the intercept analysis that the rainy regions tend to be 

more solidly filled than the cascade theory would predict, this does not remove the 

possibility of quite jagged boundaries. So we add one additional element to our picture 

of spatial rainfall painted by deviations from the cascade theory: the mesoscale anvil 

regions, while tending to be almost solidly filled, have very rough boundaries.

We come now to the issue of estimating the random cascade parameters of the 

rainfall fields, or more generally, the question of the class of generators that is most 

appropriate to the data. We apply here the notion of kth order approximations devel-

oped in Section 3.4. Since from that point of view the β-model is the first-order model, 

the primary remaining question is how good a model it is, or conversely, how large are 
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τ 0( )
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the deviations from it. As we discussed above, Over and Gupta (1994) measured these 

deviations in terms of the values of the  function. Due to the anomalous values of 

 and the poor estimation accuracy that may be expected for large q, it would be 

nice to have a better method. Following the ideas presented in Section 3.4.3 regarding 

approximate generators, we use the derivatives of  at  to estimate the pa-

rameters: the first derivative to estimate β for the “best-fit” β-model and the second 

derivative to measure the curvature of the  function at . The derivatives are 

estimated directly by the scaling of the derivatives of the moments, as described in 

Section 3.3

In order to illustrate the goodness-of-fit of the β-model and to characterize the 

second-order structure, we plot  versus  for various values 

of q in the neighborhood of  in Figures 4.21 through 4.24. For  (Figure 

4.21), the  values are mostly negative, which is of course an anomaly since  

is in general convex. Hence we ignore the  results as strongly influenced by 

the anomalous concavity discussed above. Most of the second derivatives for  

(Figure 4.22) are positive, but there are still a lot of negative values and the average is 

clearly smaller than in the results for  (Figure 4.23). While it is not necessari-

ly true that the second derivative will decrease with q for  either in theory or in 

data, there is a strong bias toward this in data, due to asymptotic linearity of estimated 

 functions (see, e.g., Schmitt et al. 1994). Hence one suspects that we see here still 

some effect of the anomalous concavity at , and probably the best estimate of 

the second derivative is given by its maximum. At , the number of negative val-

ues is smaller than at , but the average has decreased, so the maximum ob-

served curvature is at . So we will use  as the characteristic measure 

of deviation from the β-model.

Evidently  is on the order of 0.15 for all three data sets, though it decreas-
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Figure 4.21  τ(2)(0.5) vs. beta
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Figure 4.22  τ(2)(1) vs. beta
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Figure 4.23  τ(2)(1.5) vs. beta
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Figure 4.24  τ(2)(2) vs. beta
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es somewhat with . By comparison with simulation results (not shown here), this de-

crease could easily be an effect of sampling error. Hence there is no clear evidence that 

the distribution of the positive part of the cascade generator depends on the value of β, 

and thus we cannot reject the hypothesis that each data set comes from a second-order 

generator homogeneous sequence of scenes of data, in the sense defined in Section 

3.4. Notice that this conclusion differs somewhat from the conclusions in Over and 

Gupta (1994), where it is reported that the β-model fit is good except for smaller val-

ues of p (equivalent to smaller values of β). Here, using different measures of the devi-

ation, it is more clear that β-model needs a roughly equal amount of correction for all 

β. It is also apparent that we cannot even reject the hypothesis that all three data sets 

are second-order generator homogeneous. This latter conclusion is remarkable particu-

larly in view of the very different origin of the Elbow radar data vis-a-vis the GATE 

data. We will return to this issue of homogeneity between regions in the following sec-

tion.

If we apply the second-order model (that is, the lognormal model) in the homoge-

neous form , we have

, (4.30)

where X is a unit normal random variable. Recall that the MKP function in this case is 

given by

(4.31)

(equation (3.116)) and thus has the first derivative
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and second derivative

. (4.33)

We estimated from data that , which corresponds to  

and

, (4.34)

taking  more or less arbitrarily.

So is  large or small? In order to be sure of our estimate of , 

let us first check the range of q for which the scaling of the moments estimates the 

MKP function according to Theorem 3.2. Since for the lognormal model

(4.35)

(from equation (3.119)),  is quite large, even for large β. Thus the governing condi-

tion of Theorem 3.2 is the moment ratio condition, which is satisfied for

(4.36)

(from equation (3.122)). This gives a decent range of satisfaction of the conditions of 

Theorem 3.2; for example, when , , and when , 

. Thus we may be confident of our estimates of  for q up to 

about 2.5 for most values of β.

One gauge of the size of  is its statistical significance, i.e., whether it is 

significantly different from zero. The data analysis (Figures 4.22 through 4.24) gives 

good visual evidence that it is significantly greater than zero, since nearly all the points 
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lie above zero.

Another way to gauge whether  is large or small is to compare 

this second-order MKP function with the equivalent first-order MKP function, i.e., the 

MKP function of the β-model with the same slope at . To compute this, notice 

from equation (4.32) that for the second-order MKP function

, (4.37)

so the equivalent first-order MKP function is

, (4.38)

since we need . These two MKP functions are plotted against each other for 

 and  in Figure 4.25 below. There it is evident that in the neighbor-

hood of , the differences are pretty minor, especially for small β, but for larger 

values of q, the second order effects grow increasingly important. The determination 

of the importance of the second order effects must come from the importance of the 

extremes in the application of the theory under consideration.

4.6  Dependence of Cascade Parameters on Large-Scale Average Rain Rate

4.6.1  Results

Heretofore, all of this thesis has been concerned with the description of the spatial 

pattern observed in rainfall field data. A fundamental problem that has not been dis-

cussed here is the issue of prediction. The basic prediction problem here is not in time, 

as in most modeling studies, but in scale. Another way of describing the study we have 

been undertaking is the following question, “Given all the available relevant informa-

tion regarding the rainfall fields at some scale , what is the ‘best’ prediction of the 
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Figure 4.25  First and second-order MKP functions with equal slopes at q=1
(a) beta=0.1, (b) beta=0.5
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structure of the field at any or all smaller scales?” An answer to this question is neces-

sary for many applications. One important example is the problem of the parameter-

ization of convection in large-scale atmospheric models. Because of the importance of 

these problems, a large literature has developed regarding the relationship between the 

large-scale information (or “forcing”) and the convection that arises at the small scale 

in response to it. Typically however the spatial structure at the small scale has not been 

a concern, instead, usually just the large-scale effects of the convection, such as the 

heating of the atmosphere due to the release of latent heat, are of concern. However, as 

described in the introduction, in hydrologic applications to floods, the spatial structure 

is critical, because the timing of runoff is sensitive to it.

We present here a very simple test of the dependence of the small-scale spatial 

structure on the large-scale conditions. We have seen that the scaling structure of se-

quences of scenes of radar rainfall data can be parameterized to the second order by a 

variable parameter governing the slope of the MKP function (β) and a constant param-

eter governing its curvature. Since β is the only parameter that varies, it will serve as 

an indicator of the spatial pattern of the rainfall as modeled by a random cascade. To 

describe the large-scale conditions, we simply compute the average rain rate over the 

whole scene (the variable  used in Chapter 3). We can then simply test how β de-

pends on . A priori, one could imagine a number of possible relationships between 

 and β. The simplest possibility is that β does not depend on . However, since β 

governs the fraction of rainy area, which one would expect to depend on , this does 

not seem very likely. A second, still relatively simple, possibility is that β and  are 

related by a one-to-one function. In this case, apart from random fluctuations (which 

of course could be quite significant), knowing  is equivalent to knowing β. The third 

possibility we consider is that β and  are dependent, but not by a one-to-one func-

tion. There are other large-scale factors in addition to  that have an effect on β.
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To answer this question for these data sets, consider the following plots. They 

contain the value of β estimated by various methods plotted as a function of . The 

value of β plotted in Figure 4.26 was estimated from the scaling of the rainy areas 

( ). The value of β plotted in Figures 4.27 and 4.28 was computed from the slope 

of the  function, with  in Figure 4.27 and  in Figure 4.28. All three 

figures clearly show that β and  are related by a one-to-one function. For the moder-

ate to large average rain rates, the form of this function is approximately exponential, 

and the parameters of a least-squares exponential fit, weighted so that the larger rain 

rates control the slope of the line, are given in the plot. The parameters of the fitted 

line show that at the least, the two sets of GATE rainfall data have very similar β ver-

sus  relationships. The fit for the Elbow radar data differs from the GATE data pri-

marily in its intercept, though in Figure 4.27, where the fit is not very good, the slope 

is also somewhat different. It is curious that the fits are not as good for  as for 

 and .

The exponential relationship fitted in these plots has the form

 or , (4.39)

where s is the slope and i is the intercept of the regression fit. This may be written in a 

more illuminating form by a little algebraic manipulation. First, notice that as β goes 

to zero,  goes to some maximum value which we will call . When , 

, so , so equation (4.39) becomes

 or (4.40)

Because the Elbow radar data differ from the GATE data primarily in the value of the 

intercept, from equation (4.40) it can be seen that this means they have different maxi-
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Figure 4.26  Beta estimated from τ(0) vs. average rain rate



142

Figure 4.27  Beta estimated from τ(1)(1) vs. average rain rate
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Figure 4.28  Beta estimated from τ(1)(0.5) vs. average rain rate
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mum rain rates (with the Elbow radar data being smaller), but as a function of the di-

mensionless average rain rate, , they are almost the same.

4.6.2  Interpretation

While such a relationship as equation (4.40) is useful in itself because, given its 

parameters are known over some region of interest, it specifies the parameters of a 

subgrid-scale spatial rainfall distribution, a more basic and ultimately more useful 

question is why such a relationship would hold. Given the answer to this question, one 

might be able to compute its parameters from a priori considerations. We derive next 

an interpretation of equation (4.40) under the assumption of second-order generator 

homogeneity of the cascade generator by examining the distribution of rain rates con-

ditioned on rain.

Consider the rain rate  in a box  at level n resulting from a random cascade 

whose initial intensity  is governed by equation (4.40) conditioned on the rain rate 

being positive:

, (4.41)

where  and, as usual,  is the positive part of the 

generator W. Because we are considering simultaneously the behavior of the whole set 

of data, it is natural to assume that the generator is of the type we defined as second-or-

der generator homogeneous, that is, , where B is a β-model generator and Y 

is generator with positive support. In this case we have

, (4.42)

Substituting this into equation (4.41) gives
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. (4.43)

Now, apart from , the only factors on the right-hand side that depend on β are

. (4.44)

Let us assume, to see where it leads, that at some level n the scaling breaks, such that 

the smaller scale variability is independent of that at the larger scales. A radical form 

of this assumption would be to posit the existence of a scale below which the spatial 

rainfall process is smooth, but the more general assumption we have made is suffi-

cient. The result is that the high frequency factor  no longer depends on β. 

Therefore, when

, (4.45)

the right-hand side and hence the rain rates conditioned on being positive will be inde-

pendent of β. The only variable in equation (4.45) (apart from β) is n so solving for it 

we obtain

, (4.46)

which gives a level at which the distribution of rain rates conditioned on being positive 

is independent of β. For the GATE data we have  and taking , equation 

(4.46) gives . Since for , the data has  levels, this scale is 

somewhat more than one level smaller in scale than the resolution of the data. More 

precisely, the “scale of homogeneity”  is given by  km since 

 km.

The existence of such a scale perhaps could have been anticipated by observing 
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from equation (4.40) that for small β the initial rain rate is large while the growth of 

the mean positive rain rates with level is by a factor of , only slightly greater than 

one. On the other hand, for large β the initial rain rate is small while the growth rate of 

mean positive rain rates  is large. Hence for any two values of β, there must be a 

scale at which their mean positive rain rates are equal. It is not however clear from this 

argument that this would occur at the same scale for all values of β, nor that it would 

hold for the whole distribution, since only the mean was used in the argument. Thus 

the  relationship, coupled with the second-order homogeneity of the data, seems 

to be saying something very fundamental. The assumption of small-scale homogeneity 

makes the argument somewhat circular, but seen from the point of view of a consisten-

cy check, it is very nice: if, as seems at least possible intuitively, the variability at 

scales smaller than some level n depends only on the distribution at level n (like a 

Markov process indexed by scale), then the  relationship, second-order homoge-

neity, and small-scale homogeneity fit together perfectly. Notice that this scale de-

pends only on the slope s of the β versus  plot, not on the intercept. The intercept 

is apparently fixed in some other way. Under this interpretation of the results, since the 

GATE and Elbow radar data have about same slope in their β versus  plots, they 

have the same homogeneity scale.

In addition, consider what would occur if some break in scale did not occur at this 

level. Consider positive rain rates at scales smaller than the homogeneity scale. Clear-

ly these are larger, the larger the value of β (i.e., the smaller the average rain rate), 

which could possibly be true for somewhat smaller scales, but for much smaller scales, 

it seems very unlikely, and the rain rates themselves would be enormous.

It is worthwhile to consider such sweeping conclusions in the light of the other lit-

erature on the subject. There is a large body of published observations from various 

types of storms in various locations (including GATE) of statistics describing convec-

b
β

b
β

β R–

β R–

Rlog

Rlog
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tive updrafts and downdrafts, such as diameters and velocities (see, e.g., Lucas et al. 

1994, Jorgensen and LeMone 1989, and references therein). These studies contain in-

tercomparisons of the statistics from each type of storm with the other types, and dis-

cuss possible explanations for the differences. The main differences seem to be 

between oceanic convection on one hand (including hurricanes) and continental con-

vection on the other. The continental convection is more intense, updrafts and down-

drafts are larger, and it is associated with greater instability, measured by convective 

available potential energy (CAPE) (Lucas et al. 1994, Jorgensen and LeMone 1989). 

These studies do not, however, consider the dependence of the statistics within a given 

storm type on various environmental factors. Perhaps this is done just to obtain larger 

samples, but it does suggest the null hypothesis that the statistics describing convec-

tion of each type and location are homogeneous, i.e., independent of environmental 

factors, given that type and location.

A second relevant body of literature has developed around the issue of the estima-

tion of tropical oceanic rainfall from satellites in anticipation of the Tropical Rainfall 

Measuring Mission (TRMM). A technique that seems to have a lot of promise is the 

so-called threshold method, originally called the area-time integral method (Doneaud 

et al. 1981). This method is based on the intriguing and useful empirical fact that in 

tropical oceanic rain (including the GATE rainfall fields), the average rain rate in a 

scene is linearly dependent with a very small variance on the fraction of area in the 

scene with rain rates greater than the threshold, for some threshold rain rate in the 

neighborhood of the mean of the positive rain rates.

This phenomenon can be “explained” if it is assumed, among other things, that the 

positive rain rates are identically distributed (see, e.g., Kedem et al. 1990). The prob-

lem with this explanation is that its assumption is easily shown to be false at the reso-

lution at which data is available. The present results suggest however that the 
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assumption may actually be true (like the observationalists seem to think) at a scale 

that it is not typically accessible to radars, let alone passive microwave radiometers. 

The non-homogeneity that is evident at coarser resolution can then be understood, as 

Morrissey (1994) recently suggested basically on intuitive grounds, as due to cluster-

ing, which must be an increasing function of rainy area and hence of average rain rate, 

given the small-scale homogeneity assumption. Finding this evidence of small-scale 

homogeneity in a scaling context also gives hope that one of the outstanding problems 

of the threshold method may be solvable in this framework, that is, the effect of 

change of resolution of the sensor.

Finally we briefly discuss a relevant Buckingham Pi-type scaling argument put 

forth by Emanuel (1994, pp. 333ff.). He defines equilibrium convection as that “in 

which the generation of CAPE by large-scale processes nearly balances its consump-

tion by convection” (Emanuel 1994, p. 333). Equilibrium convection is much more 

common than the other kind, triggered convection, in which CAPE builds up over a 

long time and is consumed by convection quickly, because typically the large-scale 

forcing varies more slowly than the time scale of convective response. In particular, 

equilibrium convection is observed over the oceans, while triggered convection is ob-

served in severe continental thunderstorms. Thus Emanuel’s two types of convection 

appear to correspond to the two types of observations discussed above. Emanuel asks 

regarding equilibrium-type convection how the fractional area of convective updrafts 

and their velocities depend on the large-scale convective mass flux rate. While these 

are not the same quantities as we have been dealing with, they seem quite analogous. 

We have not discussed fractional rainy area in this context but it is certainly available 

from an argument like that resulting in equation (4.43). The updraft velocity is a mea-

sure of the intensity of the convection, as is the rain rate in a small box, conditioned on 

it being positive. And clearly the large-scale convective mass flux is related to the 
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large-scale average rain rate, though the former is more a cause and the latter more of 

an effect.

Emanuel argues that equilibrium convection can be characterized by three param-

eters, , the large-scale convective mass flux (the forcing), N, the buoyancy frequen-

cy of the stable environment of the clouds, and D, the depth of the convection. By the 

Pi theorem, these three form one dimensionless parameter, . The frac-

tional area of convective updrafts, σ, and their vertical velocity, , enter through the 

fact that their product gives the convective mass flux, i.e., . Since σ is di-

mensionless, it must be given by , which implies . A physical ar-

gument is used to obtain a value for m. It is based on the transience of convection, 

assuming that a cloud forms in response to slight environmental instability. Thus the 

updraft velocity is related to the amount of CAPE produced by the large-scale process-

es in the time it takes for surface air to ascend through the depth of the convection. For 

dimensional reasons, a velocity should be proportional to the square root of CAPE, 

giving the result that . Thus we have

(4.47)

and

. (4.48)

This result says that the fractional area of updrafts increases more quickly with the 

large-scale forcing than does the updraft velocity (the measure of convective intensi-

ty), though the updraft velocity does increase. If the conclusion was that the updraft 

velocity did not increase with the large-scale forcing, it would be analogous to what 

we have been arguing from the cascade analysis of GATE data. His conclusions indi-
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cate that there may be physical reasons to believe that the updraft velocity at least, if 

not the positive rain rates, increase with large-scale forcing.

The tentativeness of Emanuel’s argument for the exponent m and the lack of em-

pirical study of this question leave it very much an open issue, in which the interpreta-

tion of the cascade results we have given could turn out to be largely correct.



Chapter 5

A Theory of Space-Time Rainfall Using Random 

Cascades

5.1  Introduction

In this chapter the spatial theory developed in Chapter 3 and tested in Chapter 4 is 

extended to include temporal evolution of the spatial field. This is necessary because 

the sequence of scenes of data analyzed in Chapter 4 are not, as the sequential analysis 

might suggest, an independent sequence with varying parameters. Instead, as intuition 

and statistical analysis would both suggest, they are highly dependent from one scene 

to the next.

The variation of the parameters of the sequence of spatial scenes implies that the 

theory will have to be non-stationary. In correspondence with the analysis of the de-

pendence of the spatial cascade parameters on the large-scale average rain rate in 

Chapter 4, the non-stationarity will be introduced by use of forcing by large-scale av-

erage rain rate, which is assumed to be prescribed.

It will become clear in the construction of the theory in Section 5.2 that it is natu-

ral to construct a Lagrangian theory (that is, following the flow). This introduces how-

ever, some difficulty in testing the theory, since data from fixed sensors has to be 

“tracked” to put it in the Lagrangian frame of reference. It also has implications for ap-

plications, such as modeling the rainfall over a river basin, which, of course, would be 

fixed in the Eulerian frame of reference. However, the Lagrangian approach is chosen 

because in addition to the naturalness of the construction, it also seems critical in un-
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derstanding the space-time structure of rainfall to separate variability experienced over 

a fixed region due to advection from that due to evolution in the Lagrangian frame of 

reference.

A space-time random cascade theory that reflects the considerations just dis-

cussed is proposed in the next section, and various general predictions are derived. 

The generator process that lies at the heart of the theory consists of two components, 

which are specified as the second order approximation to the results of the spatial anal-

ysis of the GATE data, and are analyzed in detail in Section 5.4. Following the GATE 

results, the first order process is non-stationary and forced by the large-scale average 

rain rate, while the second order process is stationary. The primary prediction derived 

from the theory developed here is the scaling of two-point temporal cross-moments, 

which, quite analogously to the spatial case, provides a test of the theory and allows 

the estimation of the additional parameters introduced by the extension to space-time. 

This is presented in Section 5.2. The Lagrangian and Eulerian cross moments are de-

rived in Section 5.3, with a resulting prediction regarding Taylor’s hypothesis of fluid 

turbulence. Tests of the theory are carried out for a case study of tracked radar rainfall 

data and are presented interspersed with theory as predictions of the theory are de-

rived.

5.2  A General Theory of Space-Time Cascades

The following natural criteria are proposed as required of a time-evolving cascade 

theory of space-time rainfall:

(a) The space-time process must be consistent with the spatial theory, i.e., at any 

fixed time, the space-time process must reduce to a random cascade.

(b) The space-time process must be causal, i.e., the future can depend only on the 

present or past. That is, at time t, the state of the system at times  must depend s t≥
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only on its state at times .

(c) The space-time process must be contingent on the large-scale forcing such that 

as  with a constant forcing, the spatial cascade converges to the appropriate cas-

cade model, regardless of the initial condition.

(d) The space-time process should contain fluctuations such that, as  with 

constant forcing, the spatial cascades generated by the space-time process will trace 

out their whole sample space with the appropriate probability measure.

This last condition says essentially that the transformation of the cascade measure 

from one time to the next is ergodic. For an introduction to ergodic theory, see, for ex-

ample, Breiman (1992, chapter 6). The ergodicity of the space-time process has impor-

tant implications for parameter estimation for the stationary case, since then time 

averages would converge to ensemble averages. In fact, we assume this in Section 5.3 

when estimating the ensemble average Lagrangian cross moments from temporal av-

erages. However, a proof of the ergodicity of the space-time process will not be at-

tempted here.

5.2.1  The Construction

Criterion (a) suggests the following construction: maintain the cascade structure 

in space, but replace the iid generators with possibly non-stationary iid stochastic pro-

cesses  that have marginal distributions satisfying the conditions of a cascade gen-

erator, i.e.,  and  for all t. A schematic of this construction is 

shown in Figure 5.1. At any time t, the process generated by the cascading of the  

will then reduce to an iid cascade with generator , satisfying criterion (a). This con-

struction will also satisfy causality, as long as the processes  are also causal in this 

sense. It will be convenient to choose the processes  such that for them, the future 

depends only on the present, i.e., as Markov processes. This is convenient because 

r t≤

t ∞→

t ∞→

Wt

P Wt 0≥( ) 1= EWt 1=

Wt

Wt

Wt

Wt



154

Markov processes are widely studied, so examples can be taken “off the shelf”, and 

because it simplifies initialization of the system: merely specifying an initial condition 

is sufficient to determine probabilistically the evolution of the system. Though we do 

not have a general proof, it appears, however, that making the generator process Mark-

ovian does not make the mass or rain rate in a pixel Markovian. We will demonstrate 

the fulfillment of criterion (c) using this construction for a particular choice of genera-

tor processes that model the structure of GATE rainfall as analyzed in Chapter 4.

Notice that these criteria exclude the extension of the spatial model to time simply 

by making the cascade three-dimensional. First of all, the condition of causality would 

W1 t( )

W0 t( )

W11 t( )

W10 t( )

W01 t( )

W00 t( )

t t1= t t2=

Figure 5.1  Time-evolving cascade construction with d=1, b=2
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be violated because the box  over which a generator applied would have a finite ex-

tent in time, say from time t to time , where  is the extent of the 

spatial cascade at the zeroth level and v is a constant (with units of velocity) that trans-

forms  into the time domain. Thus at time t the system would “know” about the 

future up to time  for all n. Second, the finitude of the domain of ap-

plicability of a cascade in space, say, for all  is appropriate (given, if no 

other scales intervene, the finitude of the size of the earth) but in time, where we 

would have , it is undesirable and in particular prevents the applica-

tion of the notion of the system coming to equilibrium as  as specified in criteria 

(c) and (d). Third, construction of a non-stationary version would require the spatial 

cascade to be non-homogeneous (i.e., having non-identically distributed generators) at 

any given time, since the distribution of the generators would have to change along the 

time axis in order to obtain the non-stationarity.

5.2.2  Scaling of the Moments: Testing and Parameter Estimation

Like the generators in the spatial model, the processes  themselves are not di-

rectly accessible in the data, so a means of testing the empirical validity of the con-

struction and estimating its parameters is not immediately obvious. In fact, as we saw, 

methods that depend on ergodicity in space fail, but the generators can be recovered 

from the scaling properties of the data, which also turns out to be true for the space-

time model. In fact, the scaling of a temporal cross-moment quantity will lead to a 

generalization of the MKP and  functions from the spatial theory. As such, the de-

velopment will be patterned after the computation of the scaling of the ensemble and 

spatial average moments of spatial cascades in Section 3.3. First the scaling of the ex-

pected (ensemble average) temporal cross-moments will be computed, and then it will 

be shown that under certain conditions on the generator process the scaling of the tem-

poral cross-moments of a single realization of the process converge to the scaling of 
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the ensemble average temporal cross-moments.

To obtain the scaling of the ensemble average cross moments, define the sum of 

qth order cross-moments of the cascade masses at level n and at times  and  

( ) as

. (5.1)

Notice that the right-hand side of equation (5.1) is the sum of the product of masses at 

the same location at different times. Since in data the rainfall field will have moved in 

this time, the tracking of this movement is critical to computing this quantity. Now 

consider the expectation over the ensemble of realizations:

. (5.2)

Since , there are  of them, and 

they are identically distributed, we obtain

,(5.3)

where it is understood that  and  refer to different times of the same pro-

cess. Notice we have taken  and  to be non-random, since  is pre-

scribed. Since for each t the  are iid and independent from , equation (5.3) 

becomes

, (5.4)
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. (5.5)

Defining now a generalized MKP function

, (5.6)

we obtain

(5.7)

(compare equation (3.34)). This result provides the form of the scaling of the expected 

cross moments, but does not show it can be obtained from a single realization (i.e., a 

single visit of the space-time cascade to its state at time  and its state at time ). The 

following theorem, however, patterned after Theorem 3.2, asserts, however, that this 

scaling does obtain for a single realization in the small-scale limit.

 Theorem 5.1 Let  (defined in equation (5.1)) be the temporal cross 

moments of a single realization of a space-time random cascade with branching num-

ber b and iid generator process  with generalized MKP function  (de-

fined in equation (5.6)). Assume that temporal cross moments of the generator process 

are such that

(5.8)
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(5.9)

in some range .

Then with probability one,

, (5.10)

for .

The proof, which is given in Appendix E, is quite similar to the proof of Theorem 

3.2. At first glance, one might think in fact that one could take  as a spatial cas-

cade generator (normalized to have unit expectation), in which case Theorem 3.2 

would apply directly. However, the dependence between  and  will not allow 

this, and a separate proof has to be made. Note also that in the proof we have neglected 

the  term, which, it should be easy to see, has no effect, since it 

is non-random and does not depend on n.

Returning now to testing the theory and estimating the new parameters from data, 

from equation (5.7) we obtain for finite n:

. (5.11)

From equation (5.11) it can been seen that according to the theory, a plot of 

 versus the level n will have an approximately constant slope. Check-

ing for this property in data thus provides a basic test of the theory.

If we define the slope of  versus the level n as

, (5.12)
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then according to equation (5.11), this gives an estimate of , which by solv-

ing equation (5.6) for  as function of  provides a means of esti-

mating the time-evolution parameters of the process , i.e., 

. (5.13)

Standard spatial analysis of the data at times  and  provides the spatial parameters 

of , i.e., those governing the marginal distribution of  at times  and . The in-

terplay between the time-evolution and spatial parameters of  will become clear as 

we construct two examples of  below in Section 5.4.

Notice the development of this theory required no assumptions on the process  

except those stated in Theorem 5.1, that the marginal distributions of  be non-nega-

tive and have mean one, and that the collection of  making up the space-time cas-

cade are iid. In particular,  need not be Markov or even causal (but of course we 

assume causality), and it may have any kind of non-stationarity. Despite this, the very 

useful result given above regarding its scaling properties was obtained.

A further general prediction of the theory may be obtained by noticing that the 

generalized MKP function may be related to certain spatial MKP functions in a simple 

way at its temporal extremes. For zero lag we have

, (5.14)

which implies that

. (5.15)

For large lag, assuming short-range dependence in , we have
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, (5.16)

which implies that

. (5.17)

Thus  will decay as a function of  from  to 

, a fact which may be used without any assumption on the 

form of the generator  to test the theory and estimate the de-correlation time of .

In the case of stationary , the functional form of the difference between 

 and  can be used to predict the behavior of  as a 

function of  more precisely. First, consider . If , which occurs 

anytime there are zeroes in the field, then

, (5.18)

so  decreases as  grows. Second, consider the derivative of the differ-

ence,

. (5.19)

This result may be interpreted as follows. When  is a β model generator, the deriv-

ative is independent of q, so the right-hand side of equation (5.19) will be zero. Then 

 will decrease at the same rate for all q as  grows. When  is not a β 

model generator,  will be convex, which means its derivative increases with 

q, so the right-hand side of equation (5.19) is positive. Then the difference is increas-

ing in q, so  decreases more quickly for larger q. These results will be illus-

trated in the case study, for which  is nearly stationary.
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As promised, we will test and demonstrate the predictions and parameters estima-

tion techniques of the space-time theory using a simple case study. The data we use is 

from the McGill Weather Radar, located in Montreal, Canada, and it was taken on 

June 19, 1992. It consists of a sequence of instantaneous radar snapshots taken at five 

minute intervals, converted to rain rate using a Z-R relation, and binned to a Cartesian 

grid with 2 by 2 km pixels. To obtain a Lagrangian field from this, a subset of the snap-

shot consisting of a 64 by 64 pixel block, was chosen at 17:00 and subsequently 

tracked by the method of maximum correlation (Zawadzki 1973; Austin and Bellon 

1974) until the block moved out of the field of view, which occurred shortly after 

20:00. The method of maximum correlation consists of finding the block at the next 

time that maximizes the correlation with the block at the present time. This is by no 

means a perfect tracking method, since it cannot account for rotation or even motion 

across only part of a pixel. We will refer collectively to any errors introduced into the 

data by tracking as “tracking error”. The case study we have chosen is particularly 

simple because the field does not rotate or deform appreciably, and the tracked data is 

approximately marginally stationary, i.e., the scaling of the spatial moments estimated 

from the tracked spatial scenes are approximately constant, and thus so is the sequence 

of spatial parameters. This may be checked by plotting the scaling of the spatial mo-

ments as a function of time, as is done in Figure 5.2.

The predictions of the theory given so far, however, do not depend on stationarity. 

A test of the first prediction, the scaling of the temporal cross moments, is given in 

Figure 5.3. It is apparent that the log-log linearity of the temporal cross moments (Fig-

ure 5.3b and c) is good, as good as that of the spatial moments (Figure 5.3a). The esti-

mates  of  are plotted together in Figure 5.5, along with the 

predicted large lag limit given by equation (5.17). Notice that the MKP function shifts 

down, rotates clockwise, and loses curvature as  increases. The first two of these 

τ̂ q t1 t2,;( ) χb q t1 t2,;( )

t2
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properties is predicted by equations (5.15) and (5.17), as discussed above. The depen-

dence of the second derivative on  is discussed below (see equations (5.30) and 

(5.31)).

The test of the decay of  predicted in equations (5.15) and (5.17) is 

shown in Figure 5.5. This plot shows decay to approximately a constant for all q in 

about 1.5 hours, perhaps slightly less for larger q, but not exactly to the function pre-

dicted by equation (5.17). For small q ( ),  for large lag never reaches 

the theoretical value, while for larger q ( ), it decays beyond the theoretical val-

ue. These behaviors have the interpretation that for small q the scenes never complete-

ly de-correlate, while for large q they become anti-correlated. Whether this apparent q-

Figure 5.2  Estimated spatial τ(q) vs. time

tracked McGill Radar rainfall field, 17:00 to 20:00 on 19 June 1992.

t2

χb q t1 t2,;( )

q 0.5< τ̂ q t1 t2,;( )

q 0.5>
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Figure 5.3  Scaling of temporal cross moments, t1 = 17:00.

(a) ; (b) ; (c) .t2 17:00= t2 17:30= t2 18:00=
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dependent correlation behavior is real or the result of estimation effects such as track-

ing error is being investigated.

With an additional observation regarding the structure of the generator process 

, the decay of  can be used to study further aspects of its temporal be-

havior. The observation is, analogous to the spatial case, that  can be written with-

out loss of generality as the product

, (5.20)

where  is a temporal version of the β model and  is strictly positive, and  and 

 are independent. Fully specified examples of  and  corresponding to the first 

and second-order generators of the spatial theory will be given below, but equation 

(5.20) is sufficient for present purposes.

Consider now the MKP function with ,

Figure 5.4  Space-time MKP functions estimated from Figure 5.3.
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, (5.21)

Thus  depends only on the properties of . In particular we have

(5.22)

and

. (5.23)

Figure 5.5  Decay of space-time MKP function with time

The decay of  (solid line) from  to  (dashed 

line) as a function of , as predicted by equations (5.15) and (5.17).
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Thus the decay of  given in Figure 5.5 is equivalently described by equa-

tions (5.22) and (5.23).

Because  must take on positive values as well as zero, there is no value of q for 

which  depends only on the properties of . However, since  is a 

temporal version of the spatial β model, its positive part has a deterministic value  

for each t, which implies that

. (5.24)

To see this, notice that

; (5.25)

otherwise,  is zero. Thus

(5.26)

and

(5.27)

by the independence of  and . Therefore

, (5.28)

so

. (5.29)

Thus the behavior of  depends only on the properties of , just as 
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 depends only on the second-order component in the spatial theory. Using this, 

by equations (5.16) and (5.17) we have

(5.30)

and

. (5.31)

Thus a decay of some kind should be evident in the behavior of  as a 

function of lag, just as in the behavior of . This is confirmed is Figure 

5.6 for , though again as in Figure 5.5 the empirical value at large lag does not 

match the value predicted by theory. Here this difference indicates that for large lag 

 becomes nearly a straight line, while the spatial MKP functions to which it 

should converge are more curved. Again, an explanation of this difference is still be-

ing sought.

5.3  Implications for Lagrangian and Eulerian Correlations

5.3.1  Lagrangian Correlation

Temporal correlation structure in the Lagrangian frame of reference is a basic 

property of space-time rainfall theories of all kinds that can be used to compare the 

theories and test them against data. The dependence of this quantity on the scale of 

spatial averaging is less commonly studied but it is just as important since some aver-

aging scale is implicit in any data set. A couple studies in which the dependence of 

temporal correlation on the averaging scale was explicitly studied are Laughlin (1981), 

who analyzed the GATE data, and Zawadzki et al. (1994), who studied the predictabil-

ity of mesoscale rainfall fields at different scales. It should be noted that Laughlin’s 
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analysis was actually Eulerian, but we list it here because his results have been used to 

specify the Lagrangian correlation structure, as in the space-time rainfall model of Bell 

(1987), and the difference is not significant for short times over larger spatial scales, 

because then the effect of advection is small.

The Lagrangian temporal correlation structure for the space-time cascade theory 

is really just a re-interpretation of the cross moments computed above. Now however 

we are more interested in how the cross moments evolve in time than how they vary as 

a function of scale of resolution. Since in estimating these moments from data we will 

equate a sample moment with its expectation, estimating this quantity from data re-

quires ergodicity (in time), which we assume holds for times long compared to the de-

Figure 5.6  Decay of curvature of space-time MKP function with time

The decay of  (solid line) from  to  (dashed line) 

as a function of , as predicted by equations (5.30) and (5.31)
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correlation time of the process . We discussed in the previous subsection a means 

of estimating this de-correlation time. Unfortunately, we will find that while the 

change in Lagrangian cross moment as a function of scale has a simple analytical 

form, its dependence on time does not. For particular choices of  and , we 

can calculate and plot the result as a function of time, and compare this to data.

The sample covariance of the field in the Lagrangian reference frame at level n 

between two times  and  is given by

, (5.32)

whose expectation is given by

, (5.33)

according to equation (5.4). We will consider three cases: the general case, the station-

ary case, and the case .

For the general case (non-stationary and any ), the only simplification we 

can make is to normalize by the moments at times  and , computing

. (5.34)
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. (5.35)

Here we see as was mentioned above that the scale-dependence of the Lagrangian 

cross moments has a simple analytical form, but the time-dependence does not, since it 

depends on  and . We will see next that for stationary  this basic fact does 

not change.

For the stationary case, it is useful to normalize slightly differently and to define 

the lag time , and define the lag-τ stationary Lagrangian cross moments 

 as

(5.36)

. (5.37)

Notice that in the stationary case,  decays from unity at  to a positive 

limit given by

(5.38)
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as . Notice that this limit depends on scale; in particular, whenever W has posi-

tive variance, the limit decreases toward zero as n increases (  decreases).

For , it is easy to compute  in terms of , which 

facilitates testing of the result, since we have no other results regarding the evolution 

of the limit mass . Using equation (3.29), we have

, (5.39)

where there are b terms in which  and  terms in which . Notice that 

each type of term is identically distributed and for  terms we have

, (5.40)

so

(5.41)

Since , we may compute a consistency check on this result as 

follows. For  equation (5.41) reduces to , which is 

indeed true for spatial cascades (see Appendix C). Using this result for 

 we can write

. (5.42)
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Equations (5.37) and (5.42) show, as in the general non-stationary case, that while 

the characteristic decay time as a function of scale cannot be predicted without speci-

fying the process , the scaling properties of the Lagrangian cross moments are im-

mediately evident. In particular, for a fixed lag τ,  is log-log linear versus scale 

λ with a slope  such that

. (5.43)

Solving this for  gives

. (5.44)

Thus if we have reason to believe that a tracked rainfall data set has a stationary 

generator process, the Lagrangian cross moments can be used to estimate , and 

its scaling can be used to test the space-time theory. Estimates of the Lagrangian cross 

moments with  of the case study data from 17:00 to 20:00 for each scale as a 

function of lag are shown in Figure 5.7a (compare Figure 3a of Zawadzki et al. 

(1994)), while the scaling for a set of lags is given in Figure 5.7b. Scaling is approxi-

mately obeyed, and the slope increases as a function of the time lag, as it should ac-

cording to equation (5.43). The estimate of  computed from the slopes of the 

Lagrangian cross moments in Figure 5.7b is plotted in Figure 5.8. This compares rea-

sonably well with the estimate of  in Figure 5.5, though they are not esti-

mating exactly the same quantity. The estimate of  in Figure 5.8 is averaged 

over all instances of lag τ in the data, whereas the estimate of  is a “path-

wise” quantity having only one value for each lag.

A power law in λ for fixed  is roughly consistent with the results of Laughlin 

(1981) and Zawadzki (1994), though again we note that Laughlin’s results are actually 
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Eulerian. What is most significant about this is that the scaling of the Lagrangian tem-

poral cross moment is a necessary result of the spatial cascade structure; it is not fitted 

by a free temporal correlation function as in, for example, the model of Bell (1987).

Figure 5.7  Behavior of the Lagrangian cross moments

(a) as a function of lag τ for different resolutions, and (b) as a function of scale of resolution λ 

for different lags (compare equation (5.37)). In (b), the solid lines connect the values obtained 

from data, while the dotted line is fitted by regression to obtain a slope for use in Figure 5.8.
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5.3.2  Eulerian Correlation and Taylor’s Hypothesis

Taylor’s hypothesis was proposed by G. I. Taylor as a means of solving a mea-

surement problem in fluid turbulence research. It was (and is) desired to study the in-

stantaneous spatial properties of the turbulent flow field by means of a time series 

measurement at a fixed point. Taylor (1938) proposed that for a fixed flow velocity u, 

the second order properties of the time series of a stationary and homogeneous random 

process  be transformed into those of the instantaneous spatial transect by 

means of the following assumption:

, (5.45)

where

Figure 5.8  Space-time MKP function from Lagrangian cross moments

 obtained from the scaling of the Lagrangian cross moments, using 

 (from equation (5.44)), where  is the slope of the dotted lines 

in Figure 5.7b and  is taken from the dotted line at  in Figure 5.2.
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(5.46)

denotes the correlation of two random quantities X and Y. Since the process  is 

by assumption homogeneous and stationary, the arguments of the correlation function 

are identically distributed and we can write

. (5.47)

Thus it should be clear that Taylor’s hypothesis (5.45) can be written equivalently in 

terms of covariances or simply cross moments.

Taylor’s hypothesis is sometimes generalized to require equality in joint distribu-

tion, i.e.,

. (5.48)

Equation (5.48) clearly implies equation (5.45). A simple way to satisfy both forms of 

Taylor’s hypothesis is to assume a frozen field model, which can be written

(5.49)

where  is a homogeneous random field. In this case the random process  

does not vary in time in the Lagrangian reference frame; it is frozen except for being 

advected at velocity u.

In early works on stochastic modeling of rainfall fields, Taylor’s hypothesis was 

often invoked as an assumption providing a means of extending a spatial model to a 

space-time model (see, for example, Mejia and Rodriguez-Iturbe 1974; Bras and Rod-

riguez-Iturbe 1976). The classic paper demonstrating that Taylor’s hypothesis might 

hold in data is that of Zawadzki (1973), who showed that for one data set that the sec-

ond order form held in his radar-derived rainfall data for times up to 40 minutes, but 
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not beyond. Crane (1990) also found Taylor’s hypothesis to be valid in rainfall over 

times up to 30 minutes and spatial scales up to 20 km for one data set and up to two 

hours and 100 km in another data set. The so-called WGR model (Waymire et al. 

1984), a clustered point process space-time rainfall model, was developed to test the 

circumstances under which Zawadzki’s empirical findings might hold in stochastic 

models of this form. They found that Taylor’s hypothesis holds approximately for 

times shorter than the correlation times of the rainfall cells in the model, with the addi-

tional requirement that the cells move at the same velocity as the cell clusters. Gupta 

and Waymire (1987) later generalized these results to show that any member of a quite 

general class of stochastic fields will satisfy Taylor’s hypothesis for short times.

Since the model proposed here is not of the type considered by Gupta and 

Waymire (1987), it is necessary to compute the conditions under which the theory pre-

dicts that Taylor’s hypothesis will hold. We will also obtain results under more a gen-

eral form of the hypothesis, namely, for any positive moment order q and at any 

resolution. We test Taylor’s hypothesis by comparing the instantaneous Eulerian cross 

moment with the Eulerian cross moment at a positive time lag τ. To present the calcu-

lation requires some new notation. It is not sufficient to identify a box at level n by an 

arbitrary indexing, , , because it lacks directional information, where-

as the field will be assumed to be advecting in some direction. Instead we will write 

, , , where i denotes now, say, the column and j 

the row. To fix ideas, assume further that columns run south-to-north and rows west-

to-east and that north is up. Then the box  is in the southwestern (lower left) cor-

ner. We assume further that the advection occurs from west-to-east at a constant veloc-

ity u. From time t to time  it therefore shifts a distance .

Now, consider the instantaneous cross moment , i.e., at 

a separation distance , where  is a free pa-
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rameter that governs (through the quantity )  in units of the number of level n 

pixels, and, as usual,  is the (normalized) scale of resolution of a pixel at 

level n. In order to have this correspond to the right-hand side of equation (5.45), we 

must have

. (5.50)

Assuming that given some u, , and n we choose m such that this equation holds, 

the Eulerian cross moment at a positive time lag τ that corresponds to the left-hand 

side of equation (5.45) is therefore . Because the 

quantities  and  appear to be at different locations, this 

latter quantity may not look like it corresponds to the left-hand side of equation (5.45), 

but in fact it does because the space-time cascade is in a Lagrangian frame of refer-

ence, which here we have assumed to be advecting at the velocity necessary such that 

the box  is at time  where the box  was at time t, according to equa-

tion (5.50).

The instantaneous spatial cross moments of a one-dimensional random cascade 

were discussed in Chapter 3 and their computation is given in Appendix D. For a two-

dimensional cascade with branching number b and moment orders , we obtain 

similarly

, (5.51)

where . It is interesting also to write this result in terms of the 

pixel resolution  and the lag in units of resolution λ pixels , which 

gives
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, (5.52)

neglecting the terms not depending on resolution or spatial lag, which simplifies to

. (5.53)

Because the resolution dependence from the  factor and that from the  

factor cancel, in the final result, the resolution appears only indirectly, since it deter-

mines the size of one of the  pixels making up the spatial lag. Notice that 

 (with equality holding for ), which implies , so as m 

grows, causing the spatial lag to grow for fixed resolution, the cross moment decreas-

es, as would be expected.

The cross moments with positive time lag (assuming stationarity) can be comput-

ed much as the instantaneous cross moments. The only difference is that the multipli-

ers in common between  and  now vary in time; this 

makes equation (D.7) take on the form:

. (5.54)

Following this change through the derivation gives the final result

(5.55)

where . Writing this result in terms of the pixel resolu-

tion λ and the lag in units of resolution λ pixels gives
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, (5.56)

again neglecting terms not depending on the resolution or spatial lag. Notice here there 

is explicit dependence on the pixel resolution λ. Since

, (5.57)

with equality holding for , the exponent of λ is non-negative but small for τ 

small (relative to the de-correlation time of ). Hence as λ decreases for fixed m, the 

cross moment also decreases, but only slightly for small τ. Since , with 

equality holding for , the exponent of  is non-positive, and thus when 

 decreases, for fixed λ, the cross moment increases, but only slightly for large τ.

Comparing equation (5.55) with equation (5.51) shows that the instantaneous 

cross moments and the Eulerian space-time cross moments have quite similar forms, 

and in particular will be approximately equal, implying the validity of Taylor’s hy-

pothesis, when

, (5.58)

which occurs, as we have noted, for τ small.

Note the perhaps surprising scale invariance of this result. Since m can compen-

sate, according to equation (5.50), for changes in resolution, Taylor’s hypothesis can 

hold equally well at all scales simultaneously. The effect of changing resolution is to 

change the cross moment without affecting the validity of Taylor’s hypothesis. Con-

sider decreasing λ (increasing n). Then we increase m in order to hold the space and 

time lags constant according to equation (5.50). The only effect of this is to decrease 

the factor  in equations (5.51) and (5.55), since , affecting both types 
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of cross moment equally (i.e., without effect on the validity of Taylor’s hypothesis). 

All this says is that two regions at some fixed separation distance in a space-time ran-

dom cascade field are more correlated at coarse resolution than they are at fine resolu-

tion. Since  and τ are fixed, no other change in the cross moments occurs 

through this change in resolution.

To our knowledge, no one has previously posed the problem of the validity of 

Taylor’s hypothesis as a function of resolution or tested it in data. In fact we will not 

test it here, since it is a rather tricky data analysis problem, particularly with regard to 

the assumption of homogeneity, which often holds fairly well in the Lagrangian frame 

of reference, but not so well in the Eulerian. It is however an important matter to con-

sider in the development and testing of theories of space-time rainfall, practically, be-

cause all data is averaged up to some finite resolution, and scientifically, because it 

will give information regarding the co-evolution of the structures at different space 

and time scales.

The study of Lovejoy and Schertzer (1991) has already indicated that time and 

space do not scale isotropically. They interpret their results as indicating that a gener-

alization of Taylor’s hypothesis for rainfall is required, which is to posit a turbulent 

(scale-dependent) advection velocity. In the present notation, would mean that u in 

equation (5.50) would depend on the level n. This implies that differential motion of 

the elements of the rainfall field is the key factor to be considered in going from a spa-

tial to a space-time theory. While differential motion is certainly observed, it is not a 

dominant factor in the data we have examined. Our examination indicates that the 

most important motion that is missed by the present analysis is rotation, for which 

equation (5.50) in its present form remains valid. The present theory also shows that 

the assumption of a scale-dependent advection velocity is not required in order to have 

space and time scale anisotropically.

rn lmax⁄
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5.4  A Specific Example of a Space-Time Construction

In order to give some concreteness to the arbitrary generator process  and to 

provide a pair of models that can be used in applications, we now describe the con-

struction of space-time versions of the first and second-order approximate spatial 

models defined in Section 3.4 and the development of the associated parameter esti-

mation methods. According to the approximation, the ith spatial scan has a second-or-

der generator that can be represented as the product of independent generators

, (5.59)

where  is such that

 and , (5.60)

i.e., it is a β-model generator, and

, (5.61)

where X is a unit normal random variable. For the first-order model, we take  

with probability one. Thus the variation in parameters (and thus the influence of the 

large-scale forcing) enters only through the changes in . Thus we propose a space-

time model constructed with iid generator processes given by

, (5.62)

where  is a continuous-time version of the sequence  and as such has an 

associated sequence of time-varying parameters , and  is a continuous 

time version of the sequence  whose parameter sequence  

remains constant.
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5.4.1  The Second-Order Process

Due to its relative simplicity as a stationary process, we construct first a candidate 

for the second-order process . As described above, at each time t, the spatial genera-

tor is the exponentiation of a Gaussian random variable with the same distribution at 

each time. Thus the process  must be the exponentiation of a stationary Gaussian 

process. The temporal dependence structure however is not determined by this as-

sumption. We have already argued that the process must be causal, and have noted the 

convenience of Markov processes. Physical intuition would suggest in addition that 

the process should be continuous if possible. A continuous Markov process suggests a 

diffusion, and making it Gaussian and stationary in addition specifies the stationary 

form of the Ornstein-Uhlenbeck process (Breiman, 1992, pp. 347ff.)., 

To define this process, we begin with , the Ornstein-Uhlenbeck process begin-

ning at .  is defined as

, (5.63)

where  is standard Brownian motion, i.e., it has continuous sample paths and inde-

pendent Gaussian increments . For the definition of an inte-

gral with respect to increments of Brownian motion, see Breiman (1992) or other 

standard works on stochastic processes.  has the interpretation of the velocity pro-

cess of a particle with mass m, suspended in a liquid with “coefficient of friction” β, 

and subject to Brownian forcing with drift  and diffusion . It is convenient to 

write  and .

A stationary version  can be constructed by beginning the process at an initial 

value selected at random from its invariant measure and appropriately scaling that val-

ue in time, i.e.,
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, (5.64)

where  is Gaussian with zero mean and variance , which we de-

note , and independent of . The process  is, as desired, Gaussian, 

stationary and Markov with continuous sample paths. It has stationary Gaussian transi-

tion probabilities, in particular, for ,

, (5.65)

and its invariant measure is the distribution of .

So that the invariant distribution has unit variance, we fix  (leaving one 

new free parameter, γ or α) and use the resulting process  to construct the process 

 as

. (5.66)

Hence  is a lognormal diffusion with lognormal invariant distribution equal to the 

distribution of , where .

Calculating the temporal cross moment ,  is fairly straightfor-

ward given the facts just presented but requires a lot of algebra. Thus the calculation is 

given in Appendix G. The result is

. (5.67)

To perform a consistency check on this result, notice that because  is a positive 

recurrent Markov process in its stationary distribution
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 . (5.68)

From equation (5.67) we have

. (5.69)

The last equality holds because as we noted following equation (5.66), Y is distributed 

as the logarithm of  where , which implies this 

equality by equation (G.5).

Thus  is given by

, (5.70)

and has a second-order (quadratic) form as a function of q that is quite similar to  

for the second order (lognormal) spatial model (equation (3.116)).

5.4.2  The First-Order Process

Now consider the first-order process . As described above, at each time instant 

,  is a β model generator with a time-varying parameter . In continuous time, 

we assume there exists a continuous function  such that  for each instant 

corresponding to the ith observation. This implies that the sample paths of  consist 

of jumps between two states, 0 and . This leaves two features of  unspecified. 

First, how  jumps between its states, and second, how  is determined.

We address the specification of  first. One approach is to give it some relatively 

simple but stochastic structure, essentially making the process  part of the space-

time theory. This approach is similar to what has typically been done in previous 

space-time theories, where, for example, storm arrivals may follow a Poisson process. 

We will follow a different approach for two reasons. First, our goal, which is to con-
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struct a theory that evolves according to the large-scale conditions, is somewhat differ-

ent. Second, as suggested by the GATE results discussed in Section 4.6, we can 

assume that  is a function of the large-scale conditions. Thus we develop a specifica-

tion of  that honors the relation that was observed in GATE between it and the large-

scale average rain rate. It could turn out in other situations that the functional relation 

between β and  is different or that additional or different large-scale variables are 

more predictive of β than is , but this would not invalidate the general approach.

Recall from the GATE results (equation (4.40)) that  can be predicted from the 

large-scale average rain rate  according to the relation

, (5.71)

where  and  are constants. It is critical to distinguish between forcing 

and response. We assume that the large-scale variable that “explains” variations in the 

small-scale structure is the forcing. According to equation (5.71), this is the large-scale 

average rain rate . However, since  and  arises from the cascade itself, 

it is really just the expected large-scale average  which ought to be taken as the 

forcing. Assume then that  is prescribed. Note that prescribing the large-scale 

forcing precludes feedbacks from the small-scale to the large. The left-hand side of 

equation (5.71) describes the response of the small-scale structure to the large-scale 

forcing, so in continuous time,  is the response function. Assigning the forcing to 

the large-scale and the response to the small-scale in fact predicts a lag between 

changes in  and β that is sometimes observed. The time scale of this lag should in 

general be given by the inverse of the fluctuation rate k which is introduced below 

(equation (5.81)). It is convenient to define a general forcing function  as
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. (5.72)

In general,  will respond to changes in , and they will be in equality only when 

 is in equilibrium with the large-scale forcing. Then we have

, (5.73)

from which it is seen that the forcing  is a probability. It is shown in Appendix F that 

requiring  to come to equilibrium with  in the long time limit when  is constant 

is sufficient to satisfy the contingency criterion (c) presented in Section 5.2 above.

To specify the manner by which  jumps between its states , it is 

sufficient to assume that it is a Markov process. Notice that its state space S is time-

varying. This turns out to be cumbersome. In order to simplify matters, we construct 

 via a process  whose sample paths consist of jumps between 0 and 1 with margin-

al probabilities

 and . (5.74)

We then define

(5.75)

and assume that  is a non-homogeneous birth-death Markov process on the state 

space . It is non-homogeneous because its parameters vary in time, even 

though its state space does not.

The basic property  must have is that it reduces to a spatial cascade generator 

(in particular, a β-model generator) for fixed t. This can be demonstrated using equa-

tion (5.75), from which it is seen that
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 and , (5.76)

i.e.,  is a β-model generator with .

So this construction satisfies the consistency criterion (see Section 5.2) of reduc-

ing to a spatial cascade. Since we have assumed it is Markov, it also satisfies the cau-

sality criterion. Specifying the process so that it satisfies the contingency criterion will 

be discussed below.

As a Markov process,  is characterized by its transition probabilities, which are 

given by

, . (5.77)

A rigorous definition of finite-state non-homogeneous birth-death Markov processes 

is given in Appendix F. The transition probabilities are characterized in turn by their 

right-handed partial derivatives

. (5.78)

The evolution of the transition probabilities are given by Kolmogorov’s forward equa-

tions, which are given for finite state space birth-death processes by

(5.79)

(see, e.g., Bhattacharya and Waymire (1990, p. 335)).

Thus the  are free parameters of the process, so it is these parameters that must 

be specified in a way that satisfies the contingency criterion. To do this, we first need 

to write the criterion in a more definite form. Using the notion of equilibrium de-

scribed above (equation (5.73)), for a time-invariant forcing , we require
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, (5.80)

i.e.,  must converge to equilibrium with a constant forcing in the long time limit. It 

can be shown in that the condition given by equation (5.80) is satisfied by taking

, (5.81)

where  is an arbitrary positive function. Although, as this shows, k may be a 

function of the forcing without violating the contingency criterion, we will take it to be 

a constant. Taking the  as in equation (5.81) actually implies the stronger result that 

 satisfies a “dynamical” contingency criterion

, (5.82)

i.e.,  responds in a first-order linear manner to the forcing . It 

is easy to see that the satisfaction of the general contingency criterion (5.80) in fact 

follows from (5.82) by taking  in (5.82) and solving for . The details are 

given in Appendix F.

With  specified as in equation (5.81) with constant k, the time behavior of the 

transition probabilities  may be computed from the forward equations. Fixing  so 

that we just have functions of , we obtain

(5.83)
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. (5.84)

From these results we see that the transition probabilities respond to changes in the 

forcing in a first-order linear manner with rate constant k. Analytical solutions of these 

equations depend of course on the form of . When , a constant, we obtain

(5.85)

and

. (5.86)

The time behavior of the marginal probabilities  may be calculat-

ed from the equations

, (5.87)

which arise from the definition of conditional probability and the theorem of total 

probability. From these we obtain  as

. (5.88)

In the  case this becomes

, (5.89)

which simply reduces to  when , i.e., when  is in equilibri-

um with the forcing at time .

Using these results, we compute the cross moments . It follows from 

equation (5.75) that
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, (5.90)

where

, (5.91)

so

. (5.92)

For the case of  in equilibrium with a constant forcing  all the unknowns in the 

cross moments have been computed and we obtain

. (5.93)

An analogous expression can be computed in principle for any specified forcing func-

tion; for examples, see Appendix F.

5.4.3  Parameter Estimation 

Now let us combine the results for  and  and consider testing and estimation 

methods. Since

, (5.94)
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. (5.96)

As noted above in Section 5.2,  depends only on the properties of , 

which, as constructed here, has one free parameter, the fluctuation rate k. From equa-

tion (5.96) we have

. (5.97)

To get this as a function of k explicitly, we must assume a functional form for the forc-

ing . The only really simple case is for ; other cases are given in Appendix F. 

In this case we have

, (5.98)

which gives a specific functional form to the decay of  which was left un-

specified in Section 5.2. Note that essentially this functional form was obtained by as-

suming that  is a Markov process. Solving for  yields

, (5.99)

which provides an easy way to test this specification of , viz, if a tracked rainfall 

field is first-order stationary (that is,  is a constant ), the theory predicts that the 

right-hand side will be exponential in the time lag τ, providing a test of the theory, 

with the inverse of the time constant of the exponential giving an estimate of the rate 

constant k. In Figure 5.9 we replot the decay of  in this form and obtain 

roughly an exponential. Ignoring the last half hour, we may conclude that insofar as an 

exponential decay is evident here, its characteristic time  appears to be on the order 

of about two hours.
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We also showed in Section 5.2 that  depends only on the properties of 

the positive process  and computed its limiting values in terms of . 

Now that we have specified the process , we may compute the functional form of 

the decay, obtaining from equation (5.96) that

. (5.100)

This may be compared to Figure 5.6, from which we conclude that, again, insofar as 

an exponential decay is evident, its characteristic time  is on the order of an hour.

We conclude this section by summarizing the parameterization of the approxi-

mate models presented here. The first-order model has the generator , which de-

pends on two parameters, the forcing function , which governs the value of the 

Figure 5.9  Estimator of first-order fluctuation rate

Test of the exponential decay of , which, according to 

equation (5.99), should estimate .

b
τ̂ 0 t1 t2,;( ) 1–

p1
1–

t1( ) r0–( ) 1 r0–( )⁄

e
k t2 t1–( )–

χb
2( )

q tt t2,;( )

Yt χb Yt,
2( )

q tt t2,;( )

Yt

χb
2( )

q tt t2,;( ) 2 1 e
α t2 t1–( )–

+( )σ2
blog=

α 1–

Bt

rt



193

spatial model β, and the fluctuation rate k. We have assumed that k, which governs the 

rate at which  fluctuates between the values of its state space , is a 

constant. Its value can be estimated by a plot like Figure 5.9. Following the results of 

the spatial analysis of the GATE data, we have assumed that  varies according to a 

function of the large-scale average rain rate , though this should only be thought of 

as an example. Plots like Figure 4.6 can be used to estimate this function. The second-

order model consists of the product , where the second-order component 

 is assumed to be a stationary lognormal diffusion with rate constant α and spatial 

parameter σ. The rate constant can be estimated by a plot like Figure 5.6. A plot like 

Figure 4.22 can be used to estimate to check the stationarity of σ and to estimate its 

value.

Bt S 0 b
βt,{ }=

rt

R

Wt BtYt=

Yt



Chapter 6

Conclusions

We demonstrated that the theory of multiplicative random cascades provides an 

accurate, easily tested model for spatially homogeneous rainfall fields and extends to 

space-time in a natural way. We identified a class of cascade generators that are rele-

vant to modeling spatial rainfall, and showed that parameters could be estimated for 

each realization (scene) of the rainfall field. This enabled us to test the scaling invari-

ance of statistical moments predicted by the theory. These tests were carried out on a 

large database of mesoscale rainfall fields, and the scaling invariance was found to be 

good for the “typical” field. More significant deviations were found for the high and 

low rain rate extremes, but it was possible to interpret these deviations in terms of the 

geometry of the fields and to hypothesize what kind of generalization of the theory 

would accommodate these features. An empirical finding of great potential signifi-

cance was the variation of the parameters with the large-scale meteorological condi-

tions, as measured by the average rain rate over the scene. In particular, only the 

parameter governing the division of the field into rainy and non-rainy regions depend-

ed on the average rain rate. The parameter governing the fluctuations within rainy re-

gions was found to be invariant with respect to average rain rate. These two results 

suggest, at least for this data, that the large-scale forcing determines how much it rains, 

but how that rain is organized spatially is determined independently by the small-scale 

processes of convection.

A space-time theory was constructed by making the spatial theory evolve accord-

ing to a non-stationary large-scale forcing. It requires that the iid random generators of 
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the spatial theory be regarded as iid stochastic processes indexed by time. Markov pro-

cesses were used as a first approximation of this extension. In the presence of advec-

tion of the rainfall field by the ambient winds, this theory follows the flow, i.e., it is in 

the Lagrangian frame of reference. The path-wise properties of the spatial theory ex-

tend naturally to the space-time theory. In particular, the space-time theory predicts 

path-wise scale-invariance of the two-point Lagrangian temporal cross moments, 

which can be used to test the theory and estimate its parameters. Tests of this general 

prediction, as well as more specific predictions from space-time extensions of first and 

second-order approximations developed for the spatial theory, were carried out on a 

case study of tracked radar rainfall data. It was found that the characteristic de-correla-

tion times of the generator processes are on the order of one to two hours.

Certain important predictions of the theory in the time domain were also comput-

ed. It was found that the Lagrangian correlation decreases in a power law manner as 

the resolution increases, as is roughly observed empirically. Under the condition of 

stationarity, the Eulerian correlation was computed and the prediction of the theory re-

garding the breakdown of Taylor’s hypothesis was worked out. The theory predicts 

that Taylor’s hypothesis will hold at any resolution up to the time scale of the genera-

tor processes, which, as noted above, is one to two hours. This also roughly matches 

empirical observations.

This research has identified a number of open problems in both the spatial and 

space-time domains. A major open problem is to test this theory on a wider variety of 

types of rainfall, both tropical and extratropical. Even though observations of extratro-

pical cyclone storms motivated the notion of a scaling hierarchy of structures in space-

time rainfall, the theory has not been tested on these storms. It is important to find out 

to what extent the small-scale rainfall is forced by large-scale dynamics and what gen-

eralizations might be needed in extratropical storms. Another open problem is an ex-
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planation of the systematic curvature of the log-moments versus log-scale. One useful 

and defensible approach to this problem is to use equally weighted regression, rather 

than weighting the scales proportionally to the number of boxes at that scale, as was 

done here. The result of such an approach would give the “average” scaling over the 

range of scales in the data, which seems the appropriate approach for applications to 

downscaling. Preliminary results using this weighting method in the GATE data indi-

cate a substantial reduction in the error of the fit and a disappearance of the problem of 

concavity in the estimated  curve. However, as discussed in the thesis, there is 

physical information in these deviations that should be taken into account. This result 

also suggests exploration of a generalization of the theory to the case where the distri-

bution of the generators depends on scale.

The space-time theory has been tested in depth only on the case study presented 

here, and in a preliminary manner on a few other cases with similar results, so further 

testing is an important priority in assessing its general validity. It is also important to 

work out sample path properties of the theory in the temporal domain. For example, 

disregarding the high frequency component , the sample paths of a single pixel at 

some scale in the first-order space-time theory consist of jumps between zero and 

some positive rain rate, the rate of fluctuations being determined by the scale of the 

pixel. It is an open question how physically realistic such a sample path structure is, as 

is the question of the implications of the sample path properties for applications.

Despite these open problems regarding the generality of the theory and certain of 

its properties, we feel that the basic structure is secure enough that the applications of 

the theory to the problems in runoff generation, floods, and measurement of rainfall 

outlined in the introduction can begin to be explored. One such application has already 

been developed; see Gupta et al. (1995) and Castro (1995). In this work, the scaling 

exponents of floods from an idealized scale-invariant Peano river basin under instanta-

τ q( )

Z∞ t( )
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neous application of spatial cascade rainfall were computed analytically. These com-

putations required a thorough understanding of the cascade theory described here. 

While there are many aspects of the rainfall-runoff problem which were ignored or 

simplified, Gupta et al. (1995) nevertheless provides an elegant basic framework in 

which to develop a physical-statistical theory of floods.

This application to floods gives one hope that similar results may be possible in 

other areas where the space-time variability of rainfall is crucial. For one further ex-

ample, consider satellite estimation of rainfall. We demonstrated in Chapter 4 a con-

nection between the independence of the second-order parameter from average rain 

rate and the homogeneity, at some scale smaller than the resolution of the data, of the 

distribution of rain rates conditioned on positive rain. Since, as explained there, homo-

geneity of the distribution of rain rate conditioned on positive rain can be used to ex-

plain the so-called threshold method of rainfall estimation, it appears that it should be 

possible to use the present results to improve the method. In particular, one would like 

to predict the behavior of the method as a function of sensor resolution, which is iden-

tified as an important open problem in the estimation of rainfall from satellites by 

Morrissey (1994).
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APPENDIX A

A Few Concepts from Measure Theory

This material is taken primarily from Billingsley (1986, sections 2 and 3). A mea-

sure is a function that maps subsets of some space to the non-negative real numbers in 

a way such that the value of the measure for a given subset indicates the amount of 

“stuff” or “mass” associated with the subset. For a measure µ and a set A, this amount 

of mass is denoted simply by . It should be immediately clear that a measure can-

not take on negative values, and it must be additive, which means, for a (possibly infi-

nite) sequence of disjoint subsets  and a measure µ, we have

. (A.1)

Spaces with uncountably infinite numbers of subsets (such as spaces that are sub-

sets of n-dimensional Euclidean space , which we will use here) introduce some 

technicalities. An important concept in this connection is that of a σ-field. Consider 

first the definition of a field. A field F is defined as a collection of subsets of some 

space Ω that satisfies the following conditions:

(a) ;

(b)  implies ; and

(c)  implies .

It can be shown that the above conditions imply that unions, complements, and inter-

sections of a finite number of sets in F are in F. The collection F is a σ-field if in addi-

µ A( )

A1 A2 …, ,

µ Ai

i

∪( ) µ Ai( )

i

∑=

ℜn

Ω F∈

A F∈ A
c F∈

A B, F∈ A B∪ F∈
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tion to conditions (a)-(c) it satisfies

(d)  implies .

In this case, complements and intersections of countably many sets are also in F. In 

this case, of course, the space Ω must contain infinitely many elements. Clearly condi-

tion (d) is required of the sequence of sets used in the additivity condition (A.1).

Now consider a collection of sets G which is not a σ-field. There always exist σ-

fields that contain G, and the intersection of these σ-fields is also a σ-field, which will 

be called the σ-field generated by G and will be denoted . Because  is the in-

tersection of the σ-fields containing G, it is the smallest σ-field containing G.

An important example of this is to take the collection G to be sets of finite disjoint 

sub-intervals of . Then the elements A of  are called the Borel sets. 

Therefore, any set generated by a finite or countable number of the unions, intersec-

tions, or complements of sub-intervals of  is a Borel set and will be measurable. 

In particular, if we define a measure Λ to be the sum of the lengths of the intervals in 

an element , then the unique extension of Λ to any Borel set is called Lebesgue 

measure.

The notion of Borel sets extends naturally to any finite region of d-dimensional 

Euclidean space. Here where we will be mainly considering subsets of two-dimension-

al Euclidean space, measures are defined on the unions, intersections, and comple-

ments of rectangles. Lebesgue measure in particular generalizes the notion of area on 

these sets.

A1 A2 …, , F∈ A1 A2 …∪ ∪ F∈

σ G( ) σ G( )

Ω 0 1 ],(= σ G( )

0 1 ],(

G G∈



APPENDIX B

Hausdorff Measure and Dimension

As preliminaries, we first define the supremum and infimum of a set of real num-

bers A, denoted supA and infA, respectively.

The supremum of A is the least upper bound of A, that is, the least number m such 

that  for all , or  if no such number m exists.

The infimum of A is the greatest lower bound of A, that is, the greatest number m 

such that  for all , or  if no such number m exists.

It is a property of the real numbers that for any subset A bounded above that supA 

exists and is a real number, or, equivalently, for any subset A of the real numbers that 

is bounded below, infA exists and is a real number. This property distinguishes the real 

numbers from the rationals, and as such may be used as an axiom (the “completeness 

axiom”) in the definition of the real numbers (see, for example, Ross (1980), Section 

4).

The supremum and infimum clearly generalize the notions of maximum and min-

imum, respectively. One important difference is that supA and infA need not be mem-

bers of the set A.

Now to Hausdorff measure and dimension. We will closely follow the presenta-

tion in Falconer (1990), Chapter 2.

(a) For a non-empty subset U of  define the diameter of U as

, (B.1)

i.e., the greatest separation distance of any pair of points in U.

x m≤ x A∈ ∞

m x≤ x A∈ ∞–

ℜn

U sup x y– x y U∈,;{ }=
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(b) If  is a finite or countable collection of sets of diameter of at most δ that 

cover a set , i.e.,  with  for each i, we say that  

is a δ-cover of F.

(c) Define for some  and 

, (B.2)

i.e., one finds the δ-cover of F that minimizes the sum  of the sth powers of the 

diameters.

(d) Define the s-dimensional Hausdorff measure  as

. (B.3)

This limit exists for any  and may be shown to have the properties of a mea-

sure.

(e) As we shall see, s may be interpreted as a dimension, hence one may expect 

that  gives the size in some sense of F in s dimensions. One way to demonstrate 

this is to show the relation of Hausdorff measure to Lebesgue measure λ, which, one 

may recall, generalizes the notion of volume to n-dimensional Euclidean space. For a 

subset , Hausdorff measure is a constant multiple of Lebesgue measure, pre-

cisely, for F a Borel subset of ,

, (B.4)

where the prefactor is the volume of an n-dimensional ball.

(f) From equation (B.2), it is clear for  that  is non-increasing in s. 

This implies by equation (B.3) that  is non-increasing in s. In fact, if  and 
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 is a δ-cover of F, then

, (B.5)

which implies by taking infima that

, (B.6)

which implies by taking the limit  that

if  then  for . (B.7)

Equation (B.7) shows that there exists a value of s at which  jumps from infinity 

to zero for increasing s. This critical value of s is the Hausdorff dimension of F, denot-

ed . Formally,

, (B.8)

so that

. (B.9)

If , then  may be zero, finite and positive, or infinity.
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APPENDIX C

Calculation of the Moments of the Cascade Limit Mass

We first develop the tool required for the calculation. The Laplace transform 

 of the distribution function  of a non-negative random variable X is defined 

as follows:

. (C.1)

A useful fact about Laplace transforms that we will use in this appendix is that the pos-

itive integer moments of X can be recovered from the Laplace transform of its distribu-

tion by differentiation. To see this, notice

, (C.2)

so if the limit  exists then the moment  exists and we have (Feller 1971, p. 

435)

. (C.3)

The idea of the calculation is to represent the basic cascade identity (Chapter 3, 

equation (3.29)) in terms of , differentiate n times, take the limit , and 

solve for . The basic identity cascade identity is

 or , (C.4)

where Z has the distribution of the cascade limit mass, written above as , and the 
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equality is in distribution. Taking the Laplace transforms of both sides of the second 

form of the basic identity, we obtain from the left-hand side

, (C.5)

and from the right-hand side

, (C.6)

since the  are iid, the  are iid, and the  and  are independent.

The left-hand side is already in terms of . The right-hand side needs some 

work. First write

, (C.7)

where  is the joint distribution function of W and Z. By the independence of W 

and Z, we can factor  as , so

. (C.8)

But

, (C.9)

so

. (C.10)

So the basic identity can be written in terms of Laplace transforms of Z as
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. (C.11)

To get moments of Z, we differentiate both sides of equation (C.11) with respect to r, 

take the limit , and solve for .

We begin with the first moment. Differentiating the left-hand side gives

, (C.12)

and the right-hand side

. (C.13)

Setting these equal to each other and taking the limit  yields

. (C.14)

Solving for  gives

, (C.15)

so

, (C.16)

which doesn’t provide any new information, but it is consistent with .

Consider now the second derivative. Differentiating the left-hand side of equation 

(C.11) twice gives

, (C.17)
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and the right-hand side

. (C.18)

Setting these equal and taking the limit  yields

(C.19)

. (C.20)

Solving for  yields

. (C.21)

Obviously, this process can be continued ad infinitum. We make use of the third 

and fourth moments of Z as well, so we record the results here.

(C.22)

and

. (C.23)

We finally note a connection to the conditions for existence of the moments of Z 

given in Theorem 2.2. Recall that in Theorem 2.2b we have that Z has a finite moment 
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of order q if and only if . Assuming the non-degeneracy con-

dition (see Theorem 2.2a), this condition is equivalent to the requirement that 

. Rewriting this condition in terms of , we obtain . Notice 

that in equations (C.21), (C.22), and  this same condition must be satisfied in order that 

the moments of Z are finite and positive.

q inf q 1 χb q( ) 0≥;≥{ }<

χb q( ) 0< EW
q

EW
q

b
q 1–<



APPENDIX D

The Ensemble Average Cross Moments for a One-Dimensional 

Cascade

Consider the limit measure of a one-dimensional iid discrete random cascade on 

the unit interval  with generator W and branching number b. Let  denote 

the limit measure integrated over the ith of the  boxes of side length  at level n 

of the cascade. Then , , is the measure in the box at the dis-

tance . Of course, the largest m for which the box  can lie within the 

unit interval is , and for all such m there are some i for which the box 

 is not inside the unit interval, an issue we will come back to later. Finally, de-

fine the p, q order lag-  ensemble average cross moment as

. (D.1)

To begin the calculation, we recall that the distribution of  is given by

, (D.2)

where  is distributed as the total mass,  and is independent of the 

 and hence of the . We assume a non-degenerate limit measure, which 

implies that , and the existence of any additional moments of Z that are re-

quired (conditions on the generator that ensure these assumptions hold are given in 

Theorem 2.2). Therefore, we can write
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(D.3)

, (D.4)

for all i for which the box  lies in the unit interval.

Now define k as the number of cascade levels above n where  and 

 have their last common weight. Pick a box  at random. Then k is a ran-

dom variable, which we denote by K and

, (D.5)

where  indicates the probability that  given the value of ,  

indicates the expectation given k, and again we restrict ourselves to the i such that the 

box  lies in the unit interval.

Consider the expectation part of the right-hand side of equation (D.5). Since, for a 

given k, the weights of  and  are the same from level 1 to level  

and independent from level  to level n, we have

. (D.6)

Since the  are iid, it follows that

. (D.7)

Now consider . Reviewing,  is the probability, given , 

that the  and  designated by a randomly chosen  have their last com-

mon weight k levels above n at level . If we consider only those  of the form 
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, , then it can be shown that

, (D.8)

at those  where  lies in the unit interval. In fact,  of the  do not, so, 

leaving them undefined, we get finally

, . (D.9)

Therefore, we can write equation (D.5) as

. (D.10)

Substituting from equations (D.7) and (D.9) gives

. (D.11)

Factoring out those terms not depending on k gives
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Defining  and summing the series gives

. (D.13)

Our goal is to compute the -dependence of the cross moments, so we substitute 
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(D.14)

. (D.15)

We now show that the cross moment has an approximate power law dependence 

on . First consider the range of values of . Because  is convex as a func-

tion of q, we have  for . In general, the maximum value of  

could be infinite, but generators that are bounded above by b figure importantly in the 

theorems about the limit measure of the cascade. So consider the member of this class 

with the largest positive moments, which occurs when  and 

, i.e., a β-model with . This cascade has zero limit mass with 

probability one, but it makes a useful upper bound. It has , which gives 

. So we may assume  without restricting ourselves un-
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, (D.18)

so

, (D.19)

which shows that the ensemble average cross moment has an approximate power law 

dependence on  with exponent

 . (D.20)

It will prove convenient to normalize this result by dividing by the marginal mo-

ment

, (D.21)

which, combining with equation (D.19) gives
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APPENDIX E

Proof of Convergence of the Spatial Average Temporal Cross 

Moments

We wish to prove Theorem 5.1, i.e.,

, (E.1)

where

 (E.2)

(equation (5.1)), and

(E.3)

(equation (5.6)).

We begin as in the proof of Theorem 3.2 (Holley and Waymire 1992) by showing 

that

, (E.4)

is a martingale sequence with respect to the sequence of sets of events , de-

fined as the realization of the values of the generator processes  and  for 

all , but only for times s and t. The conditions defining a martingale are given in 
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Section 3.2. Due to the construction of the set of events , conditions (a) and 

(b) are automatically satisfied. Condition (c) is satisfied by virtue of  being the 

ratio of a quantity and its expected value, hence  for all n.

As usual, condition (d),

 with probability one, (E.5)

takes a bit more work. We must show that

. (E.6)

i.e.,

. (E.7)

To do this, expand the left-hand side as follows:
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(E.9)

(E.10)

, (E.11)

completing the demonstration of condition (d).

Hence all the conditions for  to be a martingale sequence are fulfilled. Thus 
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by the submartingale convergence theorem (see, e.g., Billingsley 1986, p. 490) the se-

quence converges to a random variable, say Y.

To proceed, we continue to follow the proof of Theorem 3.2 in Holley and 

Waymire (1992). Dropping the box identifier , which should still be understood in 

random variables in summands, we write

(E.12)

. (E.13)

Notice that

, (E.14)

by the martingale convergence proved above.

We will next show that  with probability one. We show below that 

 and , which implies that  by Chebyshev’s ine-

quality and the Borel-Cantelli lemma. To see this, notice that by Chebyshev’s inequal-

ity (Battacharya and Waymire 1990, p. 630),
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(E.15), which implies that  by the Borel-Cantelli 

lemma, part 1 (Battacharya and Waymire 1990, p. 647). Since  is arbitrary, we 

have .

Now we show that .  can be written
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so
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And now we show . First, since , , and
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the  terms contribute, so

. (E.20)
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(E.21)

(E.22)

. (E.23)

Therefore
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APPENDIX F

Finite-State Non-Homogeneous Birth-Death Processes

F.1  Definition

A non-homogeneous birth-death process is a continuous-time Markov process 

with non-homogeneous transition probabilities defined as

, 

with the following properties (Bhattacharya and Waymire 1990, p. 335):

(a) The  are continuous for  in the (closed) interval .

(b) The  have “initial” conditions given by

, (F.1)

where  is Kronecker’s delta, which is given by  if ; otherwise 

.

(c) The right-handed partial derivatives with respect to t, defined by

, (F.2)

exist and are finite for all .

The equations that describe the evolution of the transition probabilities in time are 

Kolmogorov’s forward equations, which are given for finite state space S by (Bhatta-

charya and Waymire 1990, p. 335):
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. (F.3)

As will be shown below, for a two-state process as we have proposed, the forward 

equations yield a pair of uncoupled first order linear ordinary differential equations for 

the transition probabilities, which can be integrated for essentially an arbitrary forcing 

.

F.2  Response to Forcing

Our next task is to specify the parameters of the process so that it responds appro-

priately to the forcing (criterion (c) in Section 5.2). It is clear from this formulation of 

a birth-death process that the free parameters of the process are the derivatives  

of the transition probabilities. Thus it will be these that will be specified so that the 

process  responds appropriately to the forcing. In particular, we want

, (F.4)

where  is a constant forcing (or, equivalently, ). Notice that 

this implies that the forcing  is in principle a probability and hence must be bounded 

such that . We will show that the requirement of equation (F.4) is satisfied 

by the following choice of the :

, (F.5)

where  is an arbitrary positive function. As described in Section 5.4, this actually 

gives something stronger, namely what we have called a “dynamical” contingency cri-

terion
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(F.6)

(equation (5.82)).

F.3  Probabilities and Transition Probabilities

To show that equation (F.5) satisfies equations (F.4) and (F.6), it is necessary to 

find the equation of evolution of . To do this, first notice that from 

equation (5.87)

. (F.7)

Using , we obtain

(F.8)

To obtain the transition probabilities, we use the forward equations (equations 

(F.3)). From those we obtain for :

(F.9)
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Fixing  (hence ) and substituting for the  from equation (F.5) 

gives
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. (F.13)

From equations (F.12) and (F.13) it can be seen that the transition probabilities decay 

exponentially toward the forcing with rate k.

Now, to obtain equation (F.6), differentiate equation (F.8) with respect to , 

which gives

, (F.14)

then substitute equations (F.12) and (F.13) into (F.14) and simplify, obtaining

(F.15)

Substituting for  from equation (F.7) gives equation 

(F.6).

Now to compute  under the constant forcing , we set  in 

equation (F.6) and solve for . These equations are first-order linear ordinary dif-

ferential equations, for which the standard form is (Simmons 1972, pp. 47-48)
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and whose solution is given by
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Applying this to the equation for , we take , , , 
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(F.18)

for arbitrary . Taking  and simplifying we obtain

. (F.19)

So it is clear that in the limit  we obtain equation (F.4) regardless of the initial 

condition  at .

The equations of evolution of the transition probabilities may be obtained similar-

ly. Applying the general solution (F.17) to the equation for  ((F.13)) with 

, we take , , and , so  is given by

(F.20)

for arbitrary . Here we take ; results for two other choices of  are given 

below. The initial condition is  (from equation (F.1)). Substituting these 

in, we obtain
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For  we have the same general solution (F.20) but a different initial condition 

 and so obtain similarly
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F.4  Waiting Probabilities

The parameter k describes the rate at which  jumps between states, thereby de-

termining the fluctuation rate and the rate at which the process responds to changes in 

the forcing. To see this, consider that the probability that a continuous time Markov 

p1 t2( ) e kt2– krt2
ekt2 t2d∫ c+( )=

rt2
rt2

r0=

p1 t2( ) r0 p1 0( ) r0–( )e kt2–+=

t2 ∞→

p1 0( ) t2 t1=

p11 t1 t2,( )

t1 0= x t( ) p11 t( )= P t( ) k= Q t( ) krt= p11 t( )

p11 0 t2,( ) e kt2– krt2
ekt2 t2d∫ c+( )=

rt2
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r0= rt2

p11 0 0,( ) 1=

p11 0 t2,( ) r0 1 r0–( )e kt2–+=

p01 0 t2,( )

p01 0 0,( ) 0=

p01 0 t2,( ) r0 1 e kt2––( )=

It
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process in state i at time  will not have jumped out at a later time  is given by

, (F.23)

which means in particular that for a homogeneous process the waiting time distribu-

tion in state i is exponential with parameter  (Bhattacharya and Waymire 1990, p. 

275). In the present case, we have (see equation (F.5))

(F.24)

and

. (F.25)

Solving these in the case of a constant forcing  (and taking ) gives

 and . (F.26)

F.5  Summary

For purposes of parameter estimation we require  and , which can 

be calculated from the general relations given above (equations (F.20) and (F.20), re-

spectively, the latter with initial condition ) for whatever forcing func-

tions are required in applying this theory to data. For completeness, we also include 

, which can also be obtained from equation (F.20) with , and 

. If need be, equations (F.20), (F.20) and (F.25) could be integrated numeri-

cally, but analytical solutions are obviously preferable. Clearly they can be easily inte-

grated analytically for sums of polynomial and exponential terms, and so we will 

t1 t2
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=
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t2∫–

= =
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t1

t2∫
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= =
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=
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p01 t1 t2,( ) p01 t1 t1,( ) 0=
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perform analytical computations for some of these as examples. For , the re-

sults are already given in equations (F.21), (F.21), (F.22) and (F.26). To display these 

results more conveniently, they have been collected into Table F.1.

The results for some other choices of  are given in the tables below. A non-sta-

tionary forcing  can be fit to one of these functions (or others as appropriate), and the 

results in these tables can then be used to calculate the moments  in order to 

test the theory and estimate k, as was done for  in Section 5.4.

Table F.1  Properties of a Birth-Death Process: Example 1

Table F.2  Properties of a Birth-Death Process: Example 2

rt r0=

rt2
r0=
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Table F.3  Properties of a Birth-Death Process: Example 3
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APPENDIX G

Cross Moments of the Stationary Log-Normal Diffusion

We want to calculate

. (G.1)

By definition we have

, (G.2)

where  denotes the joint distribution of . In order to make use of 

the transition probability distribution of the process , we write the integral in equa-

tion (G.2) as

. (G.3)

As given in equation (5.65) with ,

, (G.4)

so  gives the moment of order  of the loga-

rithm of a normal random variable with the distribution (G.4). Recalling that when 

,
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Ṽt τ+ Ṽt|| vt=( ) N vte
ατ–

1 e
2ατ–

–,[ ]∼

e
qσ blog( )vt τ+ dF
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, (G.5)

we have

. (G.6)

So we rewrite (G.3) as

, (G.7)

and essentially play the same trick again. We know that  is a unit normal random 

variable, so the integral in (G.7) is the moment of order  of the log-

arithm of a unit normal random variable. Thus the value of the integral in (G.7) is

 , (G.8)

and after a little algebra (G.7) becomes

. (G.9)

So finally from (G.1) and (G.9) we have

. (G.10)
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